Blame view

3rdparty/opencv-4.5.4/modules/dnn/test/cityscapes_semsegm_test_enet.py 4.56 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  import numpy as np
  import sys
  import os
  import fnmatch
  import argparse
  
  try:
      import cv2 as cv
  except ImportError:
      raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
                        'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
  try:
      import torch
  except ImportError:
      raise ImportError('Can\'t find pytorch. Please install it by following instructions on the official site')
  
  from torch.utils.serialization import load_lua
  from pascal_semsegm_test_fcn import eval_segm_result, get_conf_mat, get_metrics, DatasetImageFetch, SemSegmEvaluation
  from imagenet_cls_test_alexnet import Framework, DnnCaffeModel
  
  
  class NormalizePreproc:
      def __init__(self):
          pass
  
      @staticmethod
      def process(img):
          image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
          image_data = np.expand_dims(image_data, 0)
          image_data /= 255.0
          return image_data
  
  
  class CityscapesDataFetch(DatasetImageFetch):
      img_dir = ''
      segm_dir = ''
      segm_files = []
      colors = []
      i = 0
  
      def __init__(self, img_dir, segm_dir, preproc):
          self.img_dir = img_dir
          self.segm_dir = segm_dir
          self.segm_files = sorted([img for img in self.locate('*_color.png', segm_dir)])
          self.colors = self.get_colors()
          self.data_prepoc = preproc
          self.i = 0
  
      @staticmethod
      def get_colors():
          result = []
          colors_list = (
           (0, 0, 0), (128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153),
           (250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0),
           (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32))
  
          for c in colors_list:
              result.append(DatasetImageFetch.pix_to_c(c))
          return result
  
      def __iter__(self):
          return self
  
      def next(self):
          if self.i < len(self.segm_files):
              segm_file = self.segm_files[self.i]
              segm = cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1]
              segm = cv.resize(segm, (1024, 512), interpolation=cv.INTER_NEAREST)
  
              img_file = self.rreplace(self.img_dir + segm_file[len(self.segm_dir):], 'gtFine_color', 'leftImg8bit')
              assert os.path.exists(img_file)
              img = cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]
              img = cv.resize(img, (1024, 512))
  
              self.i += 1
              gt = self.color_to_gt(segm, self.colors)
              img = self.data_prepoc.process(img)
              return img, gt
          else:
              self.i = 0
              raise StopIteration
  
      def get_num_classes(self):
          return len(self.colors)
  
      @staticmethod
      def locate(pattern, root_path):
          for path, dirs, files in os.walk(os.path.abspath(root_path)):
              for filename in fnmatch.filter(files, pattern):
                  yield os.path.join(path, filename)
  
      @staticmethod
      def rreplace(s, old, new, occurrence=1):
          li = s.rsplit(old, occurrence)
          return new.join(li)
  
  
  class TorchModel(Framework):
      net = object
  
      def __init__(self, model_file):
          self.net = load_lua(model_file)
  
      def get_name(self):
          return 'Torch'
  
      def get_output(self, input_blob):
          tensor = torch.FloatTensor(input_blob)
          out = self.net.forward(tensor).numpy()
          return out
  
  
  class DnnTorchModel(DnnCaffeModel):
      net = cv.dnn.Net()
  
      def __init__(self, model_file):
          self.net = cv.dnn.readNetFromTorch(model_file)
  
      def get_output(self, input_blob):
          self.net.setBlob("", input_blob)
          self.net.forward()
          return self.net.getBlob(self.net.getLayerNames()[-1])
  
  if __name__ == "__main__":
      parser = argparse.ArgumentParser()
      parser.add_argument("--imgs_dir", help="path to Cityscapes validation images dir, imgsfine/leftImg8bit/val")
      parser.add_argument("--segm_dir", help="path to Cityscapes dir with segmentation, gtfine/gtFine/val")
      parser.add_argument("--model", help="path to torch model, download it here: "
                          "https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa")
      parser.add_argument("--log", help="path to logging file")
      args = parser.parse_args()
  
      prep = NormalizePreproc()
      df = CityscapesDataFetch(args.imgs_dir, args.segm_dir, prep)
  
      fw = [TorchModel(args.model),
            DnnTorchModel(args.model)]
  
      segm_eval = SemSegmEvaluation(args.log)
      segm_eval.process(fw, df)