Blame view

3rdparty/opencv-4.5.4/modules/dnn/test/imagenet_cls_test_alexnet.py 9.53 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  from __future__ import print_function
  from abc import ABCMeta, abstractmethod
  import numpy as np
  import sys
  import os
  import argparse
  import time
  
  try:
      import caffe
  except ImportError:
      raise ImportError('Can\'t find Caffe Python module. If you\'ve built it from sources without installation, '
                        'configure environment variable PYTHONPATH to "git/caffe/python" directory')
  try:
      import cv2 as cv
  except ImportError:
      raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
                        'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
  
  try:
      xrange          # Python 2
  except NameError:
      xrange = range  # Python 3
  
  
  class DataFetch(object):
      imgs_dir = ''
      frame_size = 0
      bgr_to_rgb = False
      __metaclass__ = ABCMeta
  
      @abstractmethod
      def preprocess(self, img):
          pass
  
      def get_batch(self, imgs_names):
          assert type(imgs_names) is list
          batch = np.zeros((len(imgs_names), 3, self.frame_size, self.frame_size)).astype(np.float32)
          for i in range(len(imgs_names)):
              img_name = imgs_names[i]
              img_file = self.imgs_dir + img_name
              assert os.path.exists(img_file)
              img = cv.imread(img_file, cv.IMREAD_COLOR)
              min_dim = min(img.shape[-3], img.shape[-2])
              resize_ratio = self.frame_size / float(min_dim)
              img = cv.resize(img, (0, 0), fx=resize_ratio, fy=resize_ratio)
              cols = img.shape[1]
              rows = img.shape[0]
              y1 = (rows - self.frame_size) / 2
              y2 = y1 + self.frame_size
              x1 = (cols - self.frame_size) / 2
              x2 = x1 + self.frame_size
              img = img[y1:y2, x1:x2]
              if self.bgr_to_rgb:
                  img = img[..., ::-1]
              image_data = img[:, :, 0:3].transpose(2, 0, 1)
              batch[i] = self.preprocess(image_data)
          return batch
  
  
  class MeanBlobFetch(DataFetch):
      mean_blob = np.ndarray(())
  
      def __init__(self, frame_size, mean_blob_path, imgs_dir):
          self.imgs_dir = imgs_dir
          self.frame_size = frame_size
          blob = caffe.proto.caffe_pb2.BlobProto()
          data = open(mean_blob_path, 'rb').read()
          blob.ParseFromString(data)
          self.mean_blob = np.array(caffe.io.blobproto_to_array(blob))
          start = (self.mean_blob.shape[2] - self.frame_size) / 2
          stop = start + self.frame_size
          self.mean_blob = self.mean_blob[:, :, start:stop, start:stop][0]
  
      def preprocess(self, img):
          return img - self.mean_blob
  
  
  class MeanChannelsFetch(MeanBlobFetch):
      def __init__(self, frame_size, imgs_dir):
          self.imgs_dir = imgs_dir
          self.frame_size = frame_size
          self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
          self.mean_blob[0] *= 104
          self.mean_blob[1] *= 117
          self.mean_blob[2] *= 123
  
  
  class MeanValueFetch(MeanBlobFetch):
      def __init__(self, frame_size, imgs_dir, bgr_to_rgb):
          self.imgs_dir = imgs_dir
          self.frame_size = frame_size
          self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
          self.mean_blob *= 117
          self.bgr_to_rgb = bgr_to_rgb
  
  
  def get_correct_answers(img_list, img_classes, net_output_blob):
      correct_answers = 0
      for i in range(len(img_list)):
          indexes = np.argsort(net_output_blob[i])[-5:]
          correct_index = img_classes[img_list[i]]
          if correct_index in indexes:
              correct_answers += 1
      return correct_answers
  
  
  class Framework(object):
      in_blob_name = ''
      out_blob_name = ''
  
      __metaclass__ = ABCMeta
  
      @abstractmethod
      def get_name(self):
          pass
  
      @abstractmethod
      def get_output(self, input_blob):
          pass
  
  
  class CaffeModel(Framework):
      net = caffe.Net
      need_reshape = False
  
      def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name, need_reshape=False):
          caffe.set_mode_cpu()
          self.net = caffe.Net(prototxt, caffemodel, caffe.TEST)
          self.in_blob_name = in_blob_name
          self.out_blob_name = out_blob_name
          self.need_reshape = need_reshape
  
      def get_name(self):
          return 'Caffe'
  
      def get_output(self, input_blob):
          if self.need_reshape:
              self.net.blobs[self.in_blob_name].reshape(*input_blob.shape)
          return self.net.forward_all(**{self.in_blob_name: input_blob})[self.out_blob_name]
  
  
  class DnnCaffeModel(Framework):
      net = object
  
      def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name):
          self.net = cv.dnn.readNetFromCaffe(prototxt, caffemodel)
          self.in_blob_name = in_blob_name
          self.out_blob_name = out_blob_name
  
      def get_name(self):
          return 'DNN'
  
      def get_output(self, input_blob):
          self.net.setInput(input_blob, self.in_blob_name)
          return self.net.forward(self.out_blob_name)
  
  
  class ClsAccEvaluation:
      log = sys.stdout
      img_classes = {}
      batch_size = 0
  
      def __init__(self, log_path, img_classes_file, batch_size):
          self.log = open(log_path, 'w')
          self.img_classes = self.read_classes(img_classes_file)
          self.batch_size = batch_size
  
      @staticmethod
      def read_classes(img_classes_file):
          result = {}
          with open(img_classes_file) as file:
              for l in file.readlines():
                  result[l.split()[0]] = int(l.split()[1])
          return result
  
      def process(self, frameworks, data_fetcher):
          sorted_imgs_names = sorted(self.img_classes.keys())
          correct_answers = [0] * len(frameworks)
          samples_handled = 0
          blobs_l1_diff = [0] * len(frameworks)
          blobs_l1_diff_count = [0] * len(frameworks)
          blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
          inference_time = [0.0] * len(frameworks)
  
          for x in xrange(0, len(sorted_imgs_names), self.batch_size):
              sublist = sorted_imgs_names[x:x + self.batch_size]
              batch = data_fetcher.get_batch(sublist)
  
              samples_handled += len(sublist)
  
              frameworks_out = []
              fw_accuracy = []
              for i in range(len(frameworks)):
                  start = time.time()
                  out = frameworks[i].get_output(batch)
                  end = time.time()
                  correct_answers[i] += get_correct_answers(sublist, self.img_classes, out)
                  fw_accuracy.append(100 * correct_answers[i] / float(samples_handled))
                  frameworks_out.append(out)
                  inference_time[i] += end - start
                  print(samples_handled, 'Accuracy for', frameworks[i].get_name() + ':', fw_accuracy[i], file=self.log)
                  print("Inference time, ms ", \
                      frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
  
              for i in range(1, len(frameworks)):
                  log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
                  diff = np.abs(frameworks_out[0] - frameworks_out[i])
                  l1_diff = np.sum(diff) / diff.size
                  print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
                  blobs_l1_diff[i] += l1_diff
                  blobs_l1_diff_count[i] += 1
                  if np.max(diff) > blobs_l_inf_diff[i]:
                      blobs_l_inf_diff[i] = np.max(diff)
                  print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
  
              self.log.flush()
  
          for i in range(1, len(blobs_l1_diff)):
              log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
              print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
  
  if __name__ == "__main__":
      parser = argparse.ArgumentParser()
      parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
      parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
                                                 "archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
      parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
                                          "https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
      parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
                                               "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
      parser.add_argument("--log", help="path to logging file")
      parser.add_argument("--mean", help="path to ImageNet mean blob caffe file, imagenet_mean.binaryproto file from"
                                         "this archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
      parser.add_argument("--batch_size", help="size of images in batch", default=1000)
      parser.add_argument("--frame_size", help="size of input image", default=227)
      parser.add_argument("--in_blob", help="name for input blob", default='data')
      parser.add_argument("--out_blob", help="name for output blob", default='prob')
      args = parser.parse_args()
  
      data_fetcher = MeanBlobFetch(args.frame_size, args.mean, args.imgs_dir)
  
      frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
                    DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
  
      acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
      acc_eval.process(frameworks, data_fetcher)