Blame view

3rdparty/opencv-4.5.4/modules/ml/src/testset.cpp 3.98 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  /*M///////////////////////////////////////////////////////////////////////////////////////
  //
  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  //
  //  By downloading, copying, installing or using the software you agree to this license.
  //  If you do not agree to this license, do not download, install,
  //  copy or use the software.
  //
  //
  //                        Intel License Agreement
  //
  // Copyright (C) 2000, Intel Corporation, all rights reserved.
  // Third party copyrights are property of their respective owners.
  //
  // Redistribution and use in source and binary forms, with or without modification,
  // are permitted provided that the following conditions are met:
  //
  //   * Redistribution's of source code must retain the above copyright notice,
  //     this list of conditions and the following disclaimer.
  //
  //   * Redistribution's in binary form must reproduce the above copyright notice,
  //     this list of conditions and the following disclaimer in the documentation
  //     and/or other materials provided with the distribution.
  //
  //   * The name of Intel Corporation may not be used to endorse or promote products
  //     derived from this software without specific prior written permission.
  //
  // This software is provided by the copyright holders and contributors "as is" and
  // any express or implied warranties, including, but not limited to, the implied
  // warranties of merchantability and fitness for a particular purpose are disclaimed.
  // In no event shall the Intel Corporation or contributors be liable for any direct,
  // indirect, incidental, special, exemplary, or consequential damages
  // (including, but not limited to, procurement of substitute goods or services;
  // loss of use, data, or profits; or business interruption) however caused
  // and on any theory of liability, whether in contract, strict liability,
  // or tort (including negligence or otherwise) arising in any way out of
  // the use of this software, even if advised of the possibility of such damage.
  //
  //M*/
  
  #include "precomp.hpp"
  
  namespace cv { namespace ml {
  
  struct PairDI
  {
      double d;
      int    i;
  };
  
  struct CmpPairDI
  {
      bool operator ()(const PairDI& e1, const PairDI& e2) const
      {
          return (e1.d < e2.d) || (e1.d == e2.d && e1.i < e2.i);
      }
  };
  
  void createConcentricSpheresTestSet( int num_samples, int num_features, int num_classes,
                                       OutputArray _samples, OutputArray _responses)
  {
      if( num_samples < 1 )
          CV_Error( CV_StsBadArg, "num_samples parameter must be positive" );
  
      if( num_features < 1 )
          CV_Error( CV_StsBadArg, "num_features parameter must be positive" );
  
      if( num_classes < 1 )
          CV_Error( CV_StsBadArg, "num_classes parameter must be positive" );
  
      int i, cur_class;
  
      _samples.create( num_samples, num_features, CV_32F );
      _responses.create( 1, num_samples, CV_32S );
  
      Mat responses = _responses.getMat();
  
      Mat mean = Mat::zeros(1, num_features, CV_32F);
      Mat cov = Mat::eye(num_features, num_features, CV_32F);
  
      // fill the feature values matrix with random numbers drawn from standard normal distribution
      randMVNormal( mean, cov, num_samples, _samples );
      Mat samples = _samples.getMat();
  
      // calculate distances from the origin to the samples and put them
      // into the sequence along with indices
      std::vector<PairDI> dis(samples.rows);
  
      for( i = 0; i < samples.rows; i++ )
      {
          PairDI& elem = dis[i];
          elem.i = i;
          elem.d = norm(samples.row(i), NORM_L2);
      }
  
      std::sort(dis.begin(), dis.end(), CmpPairDI());
  
      // assign class labels
      num_classes = std::min( num_samples, num_classes );
      for( i = 0, cur_class = 0; i < num_samples; ++cur_class )
      {
          int last_idx = num_samples * (cur_class + 1) / num_classes - 1;
          double max_dst = dis[last_idx].d;
          max_dst = std::max( max_dst, dis[i].d );
  
          for( ; i < num_samples && dis[i].d <= max_dst; ++i )
              responses.at<int>(dis[i].i) = cur_class;
      }
  }
  
  }}
  
  /* End of file. */