Blame view

3rdparty/opencv-4.5.4/modules/ml/test/test_em.cpp 6.55 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #include "test_precomp.hpp"
  
  namespace opencv_test { namespace {
  
  CV_ENUM(EM_START_STEP, EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP)
  CV_ENUM(EM_COV_MAT, EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
  
  typedef testing::TestWithParam< tuple<EM_START_STEP, EM_COV_MAT> > ML_EM_Params;
  
  TEST_P(ML_EM_Params, accuracy)
  {
      const int nclusters = 3;
      const int sizesArr[] = { 500, 700, 800 };
      const vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
      const int pointsCount = sizesArr[0] + sizesArr[1] + sizesArr[2];
      Mat means;
      vector<Mat> covs;
      defaultDistribs( means, covs, CV_64FC1 );
      Mat trainData(pointsCount, 2, CV_64FC1 );
      Mat trainLabels;
      generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
      Mat testData( pointsCount, 2, CV_64FC1 );
      Mat testLabels;
      generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
      Mat probs(trainData.rows, nclusters, CV_64FC1, cv::Scalar(1));
      Mat weights(1, nclusters, CV_64FC1, cv::Scalar(1));
      TermCriteria termCrit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, FLT_EPSILON);
      int startStep = get<0>(GetParam());
      int covMatType = get<1>(GetParam());
      cv::Mat labels;
  
      Ptr<EM> em = EM::create();
      em->setClustersNumber(nclusters);
      em->setCovarianceMatrixType(covMatType);
      em->setTermCriteria(termCrit);
      if( startStep == EM::START_AUTO_STEP )
          em->trainEM( trainData, noArray(), labels, noArray() );
      else if( startStep == EM::START_E_STEP )
          em->trainE( trainData, means, covs, weights, noArray(), labels, noArray() );
      else if( startStep == EM::START_M_STEP )
          em->trainM( trainData, probs, noArray(), labels, noArray() );
  
      {
          SCOPED_TRACE("Train");
          float err = 1000;
          EXPECT_TRUE(calcErr( labels, trainLabels, sizes, err , false, false ));
          EXPECT_LE(err, 0.008f);
      }
  
      {
          SCOPED_TRACE("Test");
          float err = 1000;
          labels.create( testData.rows, 1, CV_32SC1 );
          for( int i = 0; i < testData.rows; i++ )
          {
              Mat sample = testData.row(i);
              Mat out_probs;
              labels.at<int>(i) = static_cast<int>(em->predict2( sample, out_probs )[1]);
          }
          EXPECT_TRUE(calcErr( labels, testLabels, sizes, err, false, false ));
          EXPECT_LE(err, 0.008f);
      }
  }
  
  INSTANTIATE_TEST_CASE_P(/**/, ML_EM_Params,
      testing::Combine(
          testing::Values(EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP),
          testing::Values(EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
      ));
  
  //==================================================================================================
  
  TEST(ML_EM, save_load)
  {
      const int nclusters = 2;
      Mat_<double> samples(3, 1);
      samples << 1., 2., 3.;
  
      std::vector<double> firstResult;
      string filename = cv::tempfile(".xml");
      {
          Mat labels;
          Ptr<EM> em = EM::create();
          em->setClustersNumber(nclusters);
          em->trainEM(samples, noArray(), labels, noArray());
          for( int i = 0; i < samples.rows; i++)
          {
              Vec2d res = em->predict2(samples.row(i), noArray());
              firstResult.push_back(res[1]);
          }
          {
              FileStorage fs = FileStorage(filename, FileStorage::WRITE);
              ASSERT_NO_THROW(fs << "em" << "{");
              ASSERT_NO_THROW(em->write(fs));
              ASSERT_NO_THROW(fs << "}");
          }
      }
      {
          Ptr<EM> em;
          ASSERT_NO_THROW(em = Algorithm::load<EM>(filename));
          for( int i = 0; i < samples.rows; i++)
          {
              SCOPED_TRACE(i);
              Vec2d res = em->predict2(samples.row(i), noArray());
              EXPECT_DOUBLE_EQ(firstResult[i], res[1]);
          }
      }
      remove(filename.c_str());
  }
  
  //==================================================================================================
  
  TEST(ML_EM, classification)
  {
      // This test classifies spam by the following way:
      // 1. estimates distributions of "spam" / "not spam"
      // 2. predict classID using Bayes classifier for estimated distributions.
      string dataFilename = findDataFile("spambase.data");
      Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0);
      ASSERT_FALSE(data.empty());
  
      Mat samples = data->getSamples();
      ASSERT_EQ(samples.cols, 57);
      Mat responses = data->getResponses();
  
      vector<int> trainSamplesMask(samples.rows, 0);
      const int trainSamplesCount = (int)(0.5f * samples.rows);
      const int testSamplesCount = samples.rows - trainSamplesCount;
      for(int i = 0; i < trainSamplesCount; i++)
          trainSamplesMask[i] = 1;
      RNG &rng = cv::theRNG();
      for(size_t i = 0; i < trainSamplesMask.size(); i++)
      {
          int i1 = rng(static_cast<unsigned>(trainSamplesMask.size()));
          int i2 = rng(static_cast<unsigned>(trainSamplesMask.size()));
          std::swap(trainSamplesMask[i1], trainSamplesMask[i2]);
      }
  
      Mat samples0, samples1;
      for(int i = 0; i < samples.rows; i++)
      {
          if(trainSamplesMask[i])
          {
              Mat sample = samples.row(i);
              int resp = (int)responses.at<float>(i);
              if(resp == 0)
                  samples0.push_back(sample);
              else
                  samples1.push_back(sample);
          }
      }
  
      Ptr<EM> model0 = EM::create();
      model0->setClustersNumber(3);
      model0->trainEM(samples0, noArray(), noArray(), noArray());
  
      Ptr<EM> model1 = EM::create();
      model1->setClustersNumber(3);
      model1->trainEM(samples1, noArray(), noArray(), noArray());
  
      // confusion matrices
      Mat_<int> trainCM(2, 2, 0);
      Mat_<int> testCM(2, 2, 0);
      const double lambda = 1.;
      for(int i = 0; i < samples.rows; i++)
      {
          Mat sample = samples.row(i);
          double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0];
          double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0];
          int classID = (sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1) ? 0 : 1;
          int resp = (int)responses.at<float>(i);
          EXPECT_TRUE(resp == 0 || resp == 1);
          if(trainSamplesMask[i])
              trainCM(resp, classID)++;
          else
              testCM(resp, classID)++;
      }
      EXPECT_LE((double)(trainCM(1,0) + trainCM(0,1)) / trainSamplesCount, 0.23);
      EXPECT_LE((double)(testCM(1,0) + testCM(0,1)) / testSamplesCount, 0.26);
  }
  
  }} // namespace