Blame view

3rdparty/opencv-4.5.4/modules/python/test/test_camshift.py 2.78 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
  #!/usr/bin/env python
  
  '''
  Camshift tracker
  ================
  
  This is a demo that shows mean-shift based tracking
  You select a color objects such as your face and it tracks it.
  This reads from video camera (0 by default, or the camera number the user enters)
  
  http://www.robinhewitt.com/research/track/camshift.html
  
  '''
  
  # Python 2/3 compatibility
  from __future__ import print_function
  import sys
  PY3 = sys.version_info[0] == 3
  
  if PY3:
      xrange = range
  
  import numpy as np
  import cv2 as cv
  from tst_scene_render import TestSceneRender
  
  from tests_common import NewOpenCVTests, intersectionRate
  
  class camshift_test(NewOpenCVTests):
  
      framesNum = 300
      frame = None
      selection = None
      drag_start = None
      show_backproj = False
      track_window = None
      render = None
      errors = 0
  
      def prepareRender(self):
  
          self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), deformation = True)
  
      def runTracker(self):
  
          framesCounter = 0
          self.selection = True
  
          xmin, ymin, xmax, ymax = self.render.getCurrentRect()
  
          self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
  
          while True:
              framesCounter += 1
              self.frame = self.render.getNextFrame()
              hsv = cv.cvtColor(self.frame, cv.COLOR_BGR2HSV)
              mask = cv.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
  
              if self.selection:
                  x0, y0, x1, y1 = self.render.getCurrentRect() + 50
                  x0 -= 100
                  y0 -= 100
  
                  hsv_roi = hsv[y0:y1, x0:x1]
                  mask_roi = mask[y0:y1, x0:x1]
                  hist = cv.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
                  cv.normalize(hist, hist, 0, 255, cv.NORM_MINMAX)
                  self.hist = hist.reshape(-1)
                  self.selection = False
  
              if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
                  self.selection = None
                  prob = cv.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
                  prob &= mask
                  term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
                  _track_box, self.track_window = cv.CamShift(prob, self.track_window, term_crit)
  
              trackingRect = np.array(self.track_window)
              trackingRect[2] += trackingRect[0]
              trackingRect[3] += trackingRect[1]
  
              if intersectionRate(self.render.getCurrentRect(), trackingRect) < 0.4:
                  self.errors += 1
  
              if framesCounter > self.framesNum:
                  break
  
          self.assertLess(float(self.errors) / self.framesNum, 0.4)
  
      def test_camshift(self):
          self.prepareRender()
          self.runTracker()
  
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()