Blame view

3rdparty/opencv-4.5.4/modules/python/test/test_gaussian_mix.py 1.79 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  #!/usr/bin/env python
  
  # Python 2/3 compatibility
  from __future__ import print_function
  import sys
  PY3 = sys.version_info[0] == 3
  
  if PY3:
      xrange = range
  
  import numpy as np
  from numpy import random
  import cv2 as cv
  
  def make_gaussians(cluster_n, img_size):
      points = []
      ref_distrs = []
      for _ in xrange(cluster_n):
          mean = (0.1 + 0.8*random.rand(2)) * img_size
          a = (random.rand(2, 2)-0.5)*img_size*0.1
          cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
          n = 100 + random.randint(900)
          pts = random.multivariate_normal(mean, cov, n)
          points.append( pts )
          ref_distrs.append( (mean, cov) )
      points = np.float32( np.vstack(points) )
      return points, ref_distrs
  
  from tests_common import NewOpenCVTests
  
  class gaussian_mix_test(NewOpenCVTests):
  
      def test_gaussian_mix(self):
  
          np.random.seed(10)
          cluster_n = 5
          img_size = 512
  
          points, ref_distrs = make_gaussians(cluster_n, img_size)
  
          em = cv.ml.EM_create()
          em.setClustersNumber(cluster_n)
          em.setCovarianceMatrixType(cv.ml.EM_COV_MAT_GENERIC)
          em.trainEM(points)
          means = em.getMeans()
          covs = em.getCovs()  # Known bug: https://github.com/opencv/opencv/pull/4232
          #found_distrs = zip(means, covs)
  
          matches_count = 0
  
          meanEps = 0.05
          covEps = 0.1
  
          for i in range(cluster_n):
              for j in range(cluster_n):
                  if (cv.norm(means[i] - ref_distrs[j][0], cv.NORM_L2) / cv.norm(ref_distrs[j][0], cv.NORM_L2) < meanEps and
                      cv.norm(covs[i] - ref_distrs[j][1], cv.NORM_L2) / cv.norm(ref_distrs[j][1], cv.NORM_L2) < covEps):
                      matches_count += 1
  
          self.assertEqual(matches_count, cluster_n)
  
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()