Blame view

3rdparty/opencv-4.5.4/modules/python/test/test_houghcircles.py 3.59 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  #!/usr/bin/python
  
  '''
  This example illustrates how to use cv.HoughCircles() function.
  '''
  
  # Python 2/3 compatibility
  from __future__ import print_function
  
  import cv2 as cv
  import numpy as np
  import sys
  from numpy import pi, sin, cos
  
  from tests_common import NewOpenCVTests
  
  def circleApproximation(circle):
  
      nPoints = 30
      dPhi = 2*pi / nPoints
      contour = []
      for i in range(nPoints):
          contour.append(([circle[0] + circle[2]*cos(i*dPhi),
              circle[1] + circle[2]*sin(i*dPhi)]))
  
      return np.array(contour).astype(int)
  
  def convContoursIntersectiponRate(c1, c2):
  
      s1 = cv.contourArea(c1)
      s2 = cv.contourArea(c2)
  
      s, _ = cv.intersectConvexConvex(c1, c2)
  
      return 2*s/(s1+s2)
  
  class houghcircles_test(NewOpenCVTests):
  
      def test_houghcircles(self):
  
          fn = "samples/data/board.jpg"
  
          src = self.get_sample(fn, 1)
          img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
          img = cv.medianBlur(img, 5)
  
          circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
  
          testCircles = [[38, 181, 17.6],
          [99.7, 166, 13.12],
          [142.7, 160, 13.52],
          [223.6, 110, 8.62],
          [79.1, 206.7, 8.62],
          [47.5, 351.6, 11.64],
          [189.5, 354.4, 11.64],
          [189.8, 298.9, 10.64],
          [189.5, 252.4, 14.62],
          [252.5, 393.4, 15.62],
          [602.9, 467.5, 11.42],
          [222, 210.4, 9.12],
          [263.1, 216.7, 9.12],
          [359.8, 222.6, 9.12],
          [518.9, 120.9, 9.12],
          [413.8, 113.4, 9.12],
          [489, 127.2, 9.12],
          [448.4, 121.3, 9.12],
          [384.6, 128.9, 8.62]]
  
          matches_counter = 0
  
          for i in range(len(testCircles)):
              for j in range(len(circles)):
  
                  tstCircle = circleApproximation(testCircles[i])
                  circle = circleApproximation(circles[j])
                  if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
                      matches_counter += 1
  
          self.assertGreater(float(matches_counter) / len(testCircles), .5)
          self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
  
  
      def test_houghcircles_alt(self):
  
          fn = "samples/data/board.jpg"
  
          src = self.get_sample(fn, 1)
          img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
          img = cv.medianBlur(img, 5)
  
          circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT_ALT, 1, 10, np.array([]), 300, 0.9, 1, 30)
  
          self.assertEqual(circles.shape, (1, 18, 3))
  
          circles = circles[0]
  
          testCircles = [[38, 181, 17.6],
          [99.7, 166, 13.12],
          [142.7, 160, 13.52],
          [223.6, 110, 8.62],
          [79.1, 206.7, 8.62],
          [47.5, 351.6, 11.64],
          [189.5, 354.4, 11.64],
          [189.8, 298.9, 10.64],
          [189.5, 252.4, 14.62],
          [252.5, 393.4, 15.62],
          [602.9, 467.5, 11.42],
          [222, 210.4, 9.12],
          [263.1, 216.7, 9.12],
          [359.8, 222.6, 9.12],
          [518.9, 120.9, 9.12],
          [413.8, 113.4, 9.12],
          [489, 127.2, 9.12],
          [448.4, 121.3, 9.12],
          [384.6, 128.9, 8.62]]
  
          matches_counter = 0
  
          for i in range(len(testCircles)):
              for j in range(len(circles)):
  
                  tstCircle = circleApproximation(testCircles[i])
                  circle = circleApproximation(circles[j])
                  if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
                      matches_counter += 1
  
          self.assertGreater(float(matches_counter) / len(testCircles), .5)
          self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()