Blame view

3rdparty/opencv-4.5.4/modules/python/test/test_squares.py 2.73 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  #!/usr/bin/env python
  
  '''
  Simple "Square Detector" program.
  
  Loads several images sequentially and tries to find squares in each image.
  '''
  
  # Python 2/3 compatibility
  import sys
  PY3 = sys.version_info[0] == 3
  
  if PY3:
      xrange = range
  
  import numpy as np
  import cv2 as cv
  
  
  def angle_cos(p0, p1, p2):
      d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
      return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
  
  def find_squares(img):
      img = cv.GaussianBlur(img, (5, 5), 0)
      squares = []
      for gray in cv.split(img):
          for thrs in xrange(0, 255, 26):
              if thrs == 0:
                  bin = cv.Canny(gray, 0, 50, apertureSize=5)
                  bin = cv.dilate(bin, None)
              else:
                  _retval, bin = cv.threshold(gray, thrs, 255, cv.THRESH_BINARY)
              contours, _hierarchy = cv.findContours(bin, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
              for cnt in contours:
                  cnt_len = cv.arcLength(cnt, True)
                  cnt = cv.approxPolyDP(cnt, 0.02*cnt_len, True)
                  if len(cnt) == 4 and cv.contourArea(cnt) > 1000 and cv.isContourConvex(cnt):
                      cnt = cnt.reshape(-1, 2)
                      max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                      if max_cos < 0.1 and filterSquares(squares, cnt):
                          squares.append(cnt)
  
      return squares
  
  def intersectionRate(s1, s2):
      area, _intersection = cv.intersectConvexConvex(np.array(s1), np.array(s2))
      return 2 * area / (cv.contourArea(np.array(s1)) + cv.contourArea(np.array(s2)))
  
  def filterSquares(squares, square):
  
      for i in range(len(squares)):
          if intersectionRate(squares[i], square) > 0.95:
              return False
  
      return True
  
  from tests_common import NewOpenCVTests
  
  class squares_test(NewOpenCVTests):
  
      def test_squares(self):
  
          img = self.get_sample('samples/data/pic1.png')
          squares = find_squares(img)
  
          testSquares = [
          [[43, 25],
          [43, 129],
          [232, 129],
          [232, 25]],
  
          [[252, 87],
          [324, 40],
          [387, 137],
          [315, 184]],
  
          [[154, 178],
          [196, 180],
          [198, 278],
          [154, 278]],
  
          [[0, 0],
          [400, 0],
          [400, 300],
          [0, 300]]
          ]
  
          matches_counter = 0
          for i in range(len(squares)):
              for j in range(len(testSquares)):
                  if intersectionRate(squares[i], testSquares[j]) > 0.9:
                      matches_counter += 1
  
          self.assertGreater(matches_counter / len(testSquares), 0.9)
          self.assertLess( (len(squares) - matches_counter) / len(squares), 0.2)
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()