Blame view

3rdparty/opencv-4.5.4/modules/ts/misc/run_long.py 6.64 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
  #!/usr/bin/env python
  from __future__ import print_function
  import xml.etree.ElementTree as ET
  from glob import glob
  from pprint import PrettyPrinter as PP
  
  LONG_TESTS_DEBUG_VALGRIND = [
      ('calib3d', 'Calib3d_InitUndistortRectifyMap.accuracy', 2017.22),
      ('dnn', 'Reproducibility*', 1000),  # large DNN models
      ('dnn', '*RCNN*', 1000),  # very large DNN models
      ('dnn', '*RFCN*', 1000),  # very large DNN models
      ('dnn', '*EAST*', 1000),  # very large DNN models
      ('dnn', '*VGG16*', 1000),  # very large DNN models
      ('dnn', '*ZFNet*', 1000),  # very large DNN models
      ('dnn', '*ResNet101_DUC_HDC*', 1000),  # very large DNN models
      ('dnn', '*LResNet100E_IR*', 1000),  # very large DNN models
      ('dnn', '*read_yolo_voc_stream*', 1000),  # very large DNN models
      ('dnn', '*eccv16*', 1000),  # very large DNN models
      ('dnn', '*OpenPose*', 1000),  # very large DNN models
      ('dnn', '*SSD/*', 1000),  # very large DNN models
      ('gapi', 'Fluid.MemoryConsumptionDoesNotGrowOnReshape', 1000000),  # test doesn't work properly under valgrind
      ('face', 'CV_Face_FacemarkLBF.test_workflow', 10000.0), # >40min on i7
      ('features2d', 'Features2d/DescriptorImage.no_crash/3', 1000),
      ('features2d', 'Features2d/DescriptorImage.no_crash/4', 1000),
      ('features2d', 'Features2d/DescriptorImage.no_crash/5', 1000),
      ('features2d', 'Features2d/DescriptorImage.no_crash/6', 1000),
      ('features2d', 'Features2d/DescriptorImage.no_crash/7', 1000),
      ('imgcodecs', 'Imgcodecs_Png.write_big', 1000),  # memory limit
      ('imgcodecs', 'Imgcodecs_Tiff.decode_tile16384x16384', 1000),  # memory limit
      ('ml', 'ML_RTrees.regression', 1423.47),
      ('optflow', 'DenseOpticalFlow_DeepFlow.ReferenceAccuracy', 1360.95),
      ('optflow', 'DenseOpticalFlow_DeepFlow_perf.perf/0', 1881.59),
      ('optflow', 'DenseOpticalFlow_DeepFlow_perf.perf/1', 5608.75),
      ('optflow', 'DenseOpticalFlow_GlobalPatchColliderDCT.ReferenceAccuracy', 5433.84),
      ('optflow', 'DenseOpticalFlow_GlobalPatchColliderWHT.ReferenceAccuracy', 5232.73),
      ('optflow', 'DenseOpticalFlow_SimpleFlow.ReferenceAccuracy', 1542.1),
      ('photo', 'Photo_Denoising.speed', 1484.87),
      ('photo', 'Photo_DenoisingColoredMulti.regression', 2447.11),
      ('rgbd', 'Rgbd_Normals.compute', 1156.32),
      ('shape', 'Hauss.regression', 2625.72),
      ('shape', 'ShapeEMD_SCD.regression', 61913.7),
      ('shape', 'Shape_SCD.regression', 3311.46),
      ('tracking', 'AUKF.br_mean_squared_error', 10764.6),
      ('tracking', 'UKF.br_mean_squared_error', 5228.27),
      ('tracking', '*DistanceAndOverlap*/1', 1000.0), # dudek
      ('tracking', '*DistanceAndOverlap*/2', 1000.0), # faceocc2
      ('videoio', 'videoio/videoio_ffmpeg.write_big*', 1000),
      ('videoio', 'videoio_ffmpeg.parallel', 1000),
      ('videoio', '*videocapture_acceleration*', 1000), # valgrind can't track HW buffers: Conditional jump or move depends on uninitialised value(s)
      ('videoio', '*videowriter_acceleration*', 1000), # valgrind crash: set_mempolicy: Operation not permitted
      ('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_BoostDesc_LBGM.regression', 1124.51),
      ('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG120.regression', 2198.1),
      ('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG48.regression', 1958.52),
      ('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG64.regression', 2113.12),
      ('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG80.regression', 2167.16),
      ('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_BoostDesc_LBGM.regression', 1511.39),
      ('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG120.regression', 1222.07),
      ('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG48.regression', 1059.14),
      ('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG64.regression', 1163.41),
      ('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG80.regression', 1179.06),
      ('ximgproc', 'L0SmoothTest.SplatSurfaceAccuracy', 6382.26),
      ('ximgproc', 'perf*/1*:perf*/2*:perf*/3*:perf*/4*:perf*/5*:perf*/6*:perf*/7*:perf*/8*:perf*/9*', 1000.0),  # only first 10 parameters
      ('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.MultiThreadReproducibility/5', 1086.33),
      ('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.MultiThreadReproducibility/7', 1405.05),
      ('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.SplatSurfaceAccuracy/5', 1253.07),
      ('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.SplatSurfaceAccuracy/7', 1599.98),
      ('ximgproc', '*MultiThreadReproducibility*/1:*MultiThreadReproducibility*/2:*MultiThreadReproducibility*/3:*MultiThreadReproducibility*/4:*MultiThreadReproducibility*/5:*MultiThreadReproducibility*/6:*MultiThreadReproducibility*/7:*MultiThreadReproducibility*/8:*MultiThreadReproducibility*/9:*MultiThreadReproducibility*/1*', 1000.0),
      ('ximgproc', '*AdaptiveManifoldRefImplTest*/1:*AdaptiveManifoldRefImplTest*/2:*AdaptiveManifoldRefImplTest*/3', 1000.0),
      ('ximgproc', '*JointBilateralFilterTest_NaiveRef*', 1000.0),
      ('ximgproc', '*RollingGuidanceFilterTest_BilateralRef*/1*:*RollingGuidanceFilterTest_BilateralRef*/2*:*RollingGuidanceFilterTest_BilateralRef*/3*', 1000.0),
      ('ximgproc', '*JointBilateralFilterTest_NaiveRef*', 1000.0),
  ]
  
  
  def longTestFilter(data, module=None):
      res = ['*', '-'] + [v for m, v, _time in data if module is None or m == module]
      return '--gtest_filter={}'.format(':'.join(res))
  
  
  # Parse one xml file, filter out tests which took less than 'timeLimit' seconds
  # Returns tuple: ( <module_name>, [ (<module_name>, <test_name>, <test_time>), ... ] )
  def parseOneFile(filename, timeLimit):
      tree = ET.parse(filename)
      root = tree.getroot()
  
      def guess(s, delims):
          for delim in delims:
              tmp = s.partition(delim)
              if len(tmp[1]) != 0:
                  return tmp[0]
          return None
      module = guess(filename, ['_posix_', '_nt_', '__']) or root.get('cv_module_name')
      if not module:
          return (None, None)
      res = []
      for elem in root.findall('.//testcase'):
          key = '{}.{}'.format(elem.get('classname'), elem.get('name'))
          val = elem.get('time')
          if float(val) >= timeLimit:
              res.append((module, key, float(val)))
      return (module, res)
  
  
  # Parse all xml files in current folder and combine results into one list
  # Print result to the stdout
  if __name__ == '__main__':
      LIMIT = 1000
      res = []
      xmls = glob('*.xml')
      for xml in xmls:
          print('Parsing file', xml, '...')
          module, testinfo = parseOneFile(xml, LIMIT)
          if not module:
              print('SKIP')
              continue
          res.extend(testinfo)
  
      print('========= RESULTS =========')
      PP(indent=4, width=100).pprint(sorted(res))