Blame view

3rdparty/opencv-4.5.4/apps/traincascade/features.cpp 2.95 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  #include "opencv2/core.hpp"
  
  #include "traincascade_features.h"
  #include "cascadeclassifier.h"
  
  using namespace std;
  using namespace cv;
  
  float calcNormFactor( const Mat& sum, const Mat& sqSum )
  {
      CV_DbgAssert( sum.cols > 3 && sqSum.rows > 3 );
      Rect normrect( 1, 1, sum.cols - 3, sum.rows - 3 );
      size_t p0, p1, p2, p3;
      CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, sum.step1() )
      double area = normrect.width * normrect.height;
      const int *sp = sum.ptr<int>();
      int valSum = sp[p0] - sp[p1] - sp[p2] + sp[p3];
      const double *sqp = sqSum.ptr<double>();
      double valSqSum = sqp[p0] - sqp[p1] - sqp[p2] + sqp[p3];
      return (float) sqrt( (double) (area * valSqSum - (double)valSum * valSum) );
  }
  
  CvParams::CvParams() : name( "params" ) {}
  void CvParams::printDefaults() const
  { cout << "--" << name << "--" << endl; }
  void CvParams::printAttrs() const {}
  bool CvParams::scanAttr( const string, const string ) { return false; }
  
  
  //---------------------------- FeatureParams --------------------------------------
  
  CvFeatureParams::CvFeatureParams() : maxCatCount( 0 ), featSize( 1 )
  {
      name = CC_FEATURE_PARAMS;
  }
  
  void CvFeatureParams::init( const CvFeatureParams& fp )
  {
      maxCatCount = fp.maxCatCount;
      featSize = fp.featSize;
  }
  
  void CvFeatureParams::write( FileStorage &fs ) const
  {
      fs << CC_MAX_CAT_COUNT << maxCatCount;
      fs << CC_FEATURE_SIZE << featSize;
  }
  
  bool CvFeatureParams::read( const FileNode &node )
  {
      if ( node.empty() )
          return false;
      maxCatCount = node[CC_MAX_CAT_COUNT];
      featSize = node[CC_FEATURE_SIZE];
      return ( maxCatCount >= 0 && featSize >= 1 );
  }
  
  Ptr<CvFeatureParams> CvFeatureParams::create( int featureType )
  {
      return featureType == HAAR ? Ptr<CvFeatureParams>(new CvHaarFeatureParams) :
          featureType == LBP ? Ptr<CvFeatureParams>(new CvLBPFeatureParams) :
          featureType == HOG ? Ptr<CvFeatureParams>(new CvHOGFeatureParams) :
          Ptr<CvFeatureParams>();
  }
  
  //------------------------------------- FeatureEvaluator ---------------------------------------
  
  void CvFeatureEvaluator::init(const CvFeatureParams *_featureParams,
                                int _maxSampleCount, Size _winSize )
  {
      CV_Assert(_maxSampleCount > 0);
      featureParams = (CvFeatureParams *)_featureParams;
      winSize = _winSize;
      numFeatures = 0;
      cls.create( (int)_maxSampleCount, 1, CV_32FC1 );
      generateFeatures();
  }
  
  void CvFeatureEvaluator::setImage(const Mat &img, uchar clsLabel, int idx)
  {
      CV_Assert(img.cols == winSize.width);
      CV_Assert(img.rows == winSize.height);
      CV_Assert(idx < cls.rows);
      cls.ptr<float>(idx)[0] = clsLabel;
  }
  
  Ptr<CvFeatureEvaluator> CvFeatureEvaluator::create(int type)
  {
      return type == CvFeatureParams::HAAR ? Ptr<CvFeatureEvaluator>(new CvHaarEvaluator) :
          type == CvFeatureParams::LBP ? Ptr<CvFeatureEvaluator>(new CvLBPEvaluator) :
          type == CvFeatureParams::HOG ? Ptr<CvFeatureEvaluator>(new CvHOGEvaluator) :
          Ptr<CvFeatureEvaluator>();
  }