Blame view

3rdparty/opencv-4.5.4/samples/dnn/siamrpnpp.py 16.3 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  import argparse
  import cv2 as cv
  import numpy as np
  import os
  
  """
  Link to original paper : https://arxiv.org/abs/1812.11703
  Link to original repo  : https://github.com/STVIR/pysot
  
  You can download the pre-trained weights of the Tracker Model from https://drive.google.com/file/d/11bwgPFVkps9AH2NOD1zBDdpF_tQghAB-/view?usp=sharing
  You can download the target net (target branch of SiamRPN++) from https://drive.google.com/file/d/1dw_Ne3UMcCnFsaD6xkZepwE4GEpqq7U_/view?usp=sharing
  You can download the search net (search branch of SiamRPN++) from https://drive.google.com/file/d/1Lt4oE43ZSucJvze3Y-Z87CVDreO-Afwl/view?usp=sharing
  You can download the head model (RPN Head) from https://drive.google.com/file/d/1zT1yu12mtj3JQEkkfKFJWiZ71fJ-dQTi/view?usp=sharing
  """
  
  class ModelBuilder():
      """ This class generates the SiamRPN++ Tracker Model by using Imported ONNX Nets
      """
      def __init__(self, target_net, search_net, rpn_head):
          super(ModelBuilder, self).__init__()
          # Build the target branch
          self.target_net = target_net
          # Build the search branch
          self.search_net = search_net
          # Build RPN_Head
          self.rpn_head = rpn_head
  
      def template(self, z):
          """ Takes the template of size (1, 1, 127, 127) as an input to generate kernel
          """
          self.target_net.setInput(z)
          outNames = self.target_net.getUnconnectedOutLayersNames()
          self.zfs_1, self.zfs_2, self.zfs_3 = self.target_net.forward(outNames)
  
      def track(self, x):
          """ Takes the search of size (1, 1, 255, 255) as an input to generate classification score and bounding box regression
          """
          self.search_net.setInput(x)
          outNames = self.search_net.getUnconnectedOutLayersNames()
          xfs_1, xfs_2, xfs_3 = self.search_net.forward(outNames)
          self.rpn_head.setInput(np.stack([self.zfs_1, self.zfs_2, self.zfs_3]), 'input_1')
          self.rpn_head.setInput(np.stack([xfs_1, xfs_2, xfs_3]), 'input_2')
          outNames = self.rpn_head.getUnconnectedOutLayersNames()
          cls, loc = self.rpn_head.forward(outNames)
          return {'cls': cls, 'loc': loc}
  
  class Anchors:
      """ This class generate anchors.
      """
      def __init__(self, stride, ratios, scales, image_center=0, size=0):
          self.stride = stride
          self.ratios = ratios
          self.scales = scales
          self.image_center = image_center
          self.size = size
          self.anchor_num = len(self.scales) * len(self.ratios)
          self.anchors = self.generate_anchors()
  
      def generate_anchors(self):
          """
          generate anchors based on predefined configuration
          """
          anchors = np.zeros((self.anchor_num, 4), dtype=np.float32)
          size = self.stride**2
          count = 0
          for r in self.ratios:
              ws = int(np.sqrt(size * 1. / r))
              hs = int(ws * r)
  
              for s in self.scales:
                  w = ws * s
                  h = hs * s
                  anchors[count][:] = [-w * 0.5, -h * 0.5, w * 0.5, h * 0.5][:]
                  count += 1
          return anchors
  
  class SiamRPNTracker:
      def __init__(self, model):
          super(SiamRPNTracker, self).__init__()
          self.anchor_stride = 8
          self.anchor_ratios = [0.33, 0.5, 1, 2, 3]
          self.anchor_scales = [8]
          self.track_base_size = 8
          self.track_context_amount = 0.5
          self.track_exemplar_size = 127
          self.track_instance_size = 255
          self.track_lr = 0.4
          self.track_penalty_k = 0.04
          self.track_window_influence = 0.44
          self.score_size = (self.track_instance_size - self.track_exemplar_size) // \
                            self.anchor_stride + 1 + self.track_base_size
          self.anchor_num = len(self.anchor_ratios) * len(self.anchor_scales)
          hanning = np.hanning(self.score_size)
          window = np.outer(hanning, hanning)
          self.window = np.tile(window.flatten(), self.anchor_num)
          self.anchors = self.generate_anchor(self.score_size)
          self.model = model
  
      def get_subwindow(self, im, pos, model_sz, original_sz, avg_chans):
          """
          Args:
              im:         bgr based input image frame
              pos:        position of the center of the frame
              model_sz:   exemplar / target image size
              s_z:        original / search image size
              avg_chans:  channel average
          Return:
              im_patch:   sub_windows for the given image input
          """
          if isinstance(pos, float):
              pos = [pos, pos]
          sz = original_sz
          im_h, im_w, im_d = im.shape
          c = (original_sz + 1) / 2
          cx, cy = pos
          context_xmin = np.floor(cx - c + 0.5)
          context_xmax = context_xmin + sz - 1
          context_ymin = np.floor(cy - c + 0.5)
          context_ymax = context_ymin + sz - 1
          left_pad = int(max(0., -context_xmin))
          top_pad = int(max(0., -context_ymin))
          right_pad = int(max(0., context_xmax - im_w + 1))
          bottom_pad = int(max(0., context_ymax - im_h + 1))
          context_xmin += left_pad
          context_xmax += left_pad
          context_ymin += top_pad
          context_ymax += top_pad
  
          if any([top_pad, bottom_pad, left_pad, right_pad]):
              size = (im_h + top_pad + bottom_pad, im_w + left_pad + right_pad, im_d)
              te_im = np.zeros(size, np.uint8)
              te_im[top_pad:top_pad + im_h, left_pad:left_pad + im_w, :] = im
              if top_pad:
                  te_im[0:top_pad, left_pad:left_pad + im_w, :] = avg_chans
              if bottom_pad:
                  te_im[im_h + top_pad:, left_pad:left_pad + im_w, :] = avg_chans
              if left_pad:
                  te_im[:, 0:left_pad, :] = avg_chans
              if right_pad:
                  te_im[:, im_w + left_pad:, :] = avg_chans
              im_patch = te_im[int(context_ymin):int(context_ymax + 1),
                         int(context_xmin):int(context_xmax + 1), :]
          else:
              im_patch = im[int(context_ymin):int(context_ymax + 1),
                         int(context_xmin):int(context_xmax + 1), :]
  
          if not np.array_equal(model_sz, original_sz):
              im_patch = cv.resize(im_patch, (model_sz, model_sz))
          im_patch = im_patch.transpose(2, 0, 1)
          im_patch = im_patch[np.newaxis, :, :, :]
          im_patch = im_patch.astype(np.float32)
          return im_patch
  
      def generate_anchor(self, score_size):
          """
          Args:
              im:         bgr based input image frame
              pos:        position of the center of the frame
              model_sz:   exemplar / target image size
              s_z:        original / search image size
              avg_chans:  channel average
          Return:
              anchor:     anchors for pre-determined values of stride, ratio, and scale
          """
          anchors = Anchors(self.anchor_stride, self.anchor_ratios, self.anchor_scales)
          anchor = anchors.anchors
          x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
          anchor = np.stack([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1)
          total_stride = anchors.stride
          anchor_num = anchors.anchor_num
          anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
          ori = - (score_size // 2) * total_stride
          xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
                               [ori + total_stride * dy for dy in range(score_size)])
          xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
                   np.tile(yy.flatten(), (anchor_num, 1)).flatten()
          anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
          return anchor
  
      def _convert_bbox(self, delta, anchor):
          """
          Args:
              delta:      localisation
              anchor:     anchor of pre-determined anchor size
          Return:
              delta:      prediction of bounding box
          """
          delta_transpose = np.transpose(delta, (1, 2, 3, 0))
          delta_contig = np.ascontiguousarray(delta_transpose)
          delta = delta_contig.reshape(4, -1)
          delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0]
          delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1]
          delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2]
          delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3]
          return delta
  
      def _softmax(self, x):
          """
          Softmax in the direction of the depth of the layer
          """
          x = x.astype(dtype=np.float32)
          x_max = x.max(axis=1)[:, np.newaxis]
          e_x = np.exp(x-x_max)
          div = np.sum(e_x, axis=1)[:, np.newaxis]
          y = e_x / div
          return y
  
      def _convert_score(self, score):
          """
          Args:
              cls:        score
          Return:
              cls:        score for cls
          """
          score_transpose = np.transpose(score, (1, 2, 3, 0))
          score_con = np.ascontiguousarray(score_transpose)
          score_view = score_con.reshape(2, -1)
          score = np.transpose(score_view, (1, 0))
          score = self._softmax(score)
          return score[:,1]
  
      def _bbox_clip(self, cx, cy, width, height, boundary):
          """
          Adjusting the bounding box
          """
          bbox_h, bbox_w = boundary
          cx = max(0, min(cx, bbox_w))
          cy = max(0, min(cy, bbox_h))
          width = max(10, min(width, bbox_w))
          height = max(10, min(height, bbox_h))
          return cx, cy, width, height
  
      def init(self, img, bbox):
          """
          Args:
              img(np.ndarray):    bgr based input image frame
              bbox: (x, y, w, h): bounding box
          """
          x, y, w, h = bbox
          self.center_pos = np.array([x + (w - 1) / 2, y + (h - 1) / 2])
          self.h = h
          self.w = w
          w_z = self.w + self.track_context_amount * np.add(h, w)
          h_z = self.h + self.track_context_amount * np.add(h, w)
          s_z = round(np.sqrt(w_z * h_z))
          self.channel_average = np.mean(img, axis=(0, 1))
          z_crop = self.get_subwindow(img, self.center_pos, self.track_exemplar_size, s_z, self.channel_average)
          self.model.template(z_crop)
  
      def track(self, img):
          """
          Args:
              img(np.ndarray): BGR image
          Return:
              bbox(list):[x, y, width, height]
          """
          w_z = self.w + self.track_context_amount * np.add(self.w, self.h)
          h_z = self.h + self.track_context_amount * np.add(self.w, self.h)
          s_z = np.sqrt(w_z * h_z)
          scale_z = self.track_exemplar_size / s_z
          s_x = s_z * (self.track_instance_size / self.track_exemplar_size)
          x_crop = self.get_subwindow(img, self.center_pos, self.track_instance_size, round(s_x), self.channel_average)
          outputs = self.model.track(x_crop)
          score = self._convert_score(outputs['cls'])
          pred_bbox = self._convert_bbox(outputs['loc'], self.anchors)
  
          def change(r):
              return np.maximum(r, 1. / r)
  
          def sz(w, h):
              pad = (w + h) * 0.5
              return np.sqrt((w + pad) * (h + pad))
  
          # scale penalty
          s_c = change(sz(pred_bbox[2, :], pred_bbox[3, :]) /
                       (sz(self.w * scale_z, self.h * scale_z)))
  
          # aspect ratio penalty
          r_c = change((self.w / self.h) /
                       (pred_bbox[2, :] / pred_bbox[3, :]))
          penalty = np.exp(-(r_c * s_c - 1) * self.track_penalty_k)
          pscore = penalty * score
  
          # window penalty
          pscore = pscore * (1 - self.track_window_influence) + \
                   self.window * self.track_window_influence
          best_idx = np.argmax(pscore)
          bbox = pred_bbox[:, best_idx] / scale_z
          lr = penalty[best_idx] * score[best_idx] * self.track_lr
  
          cpx, cpy = self.center_pos
          x,y,w,h = bbox
          cx = x + cpx
          cy = y + cpy
  
          # smooth bbox
          width = self.w * (1 - lr) + w * lr
          height = self.h * (1 - lr) + h * lr
  
          # clip boundary
          cx, cy, width, height = self._bbox_clip(cx, cy, width, height, img.shape[:2])
  
          # udpate state
          self.center_pos = np.array([cx, cy])
          self.w = width
          self.h = height
          bbox = [cx - width / 2, cy - height / 2, width, height]
          best_score = score[best_idx]
          return {'bbox': bbox, 'best_score': best_score}
  
  def get_frames(video_name):
      """
      Args:
          Path to input video frame
      Return:
          Frame
      """
      cap = cv.VideoCapture(video_name if video_name else 0)
      while True:
          ret, frame = cap.read()
          if ret:
              yield frame
          else:
              break
  
  def main():
      """ Sample SiamRPN Tracker
      """
      # Computation backends supported by layers
      backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
                  cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
      # Target Devices for computation
      targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
                 cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
  
      parser = argparse.ArgumentParser(description='Use this script to run SiamRPN++ Visual Tracker',
                                       formatter_class=argparse.ArgumentDefaultsHelpFormatter)
      parser.add_argument('--input_video', type=str, help='Path to input video file. Skip this argument to capture frames from a camera.')
      parser.add_argument('--target_net', type=str, default='target_net.onnx', help='Path to part of SiamRPN++ ran on target frame.')
      parser.add_argument('--search_net', type=str, default='search_net.onnx', help='Path to part of SiamRPN++ ran on search frame.')
      parser.add_argument('--rpn_head', type=str, default='rpn_head.onnx', help='Path to RPN Head ONNX model.')
      parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
                          help="Select a computation backend: "
                          "%d: automatically (by default), "
                          "%d: Halide, "
                          "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
                          "%d: OpenCV Implementation, "
                          "%d: VKCOM, "
                          "%d: CUDA" % backends)
      parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
                          help='Select a target device: '
                          '%d: CPU target (by default), '
                          '%d: OpenCL, '
                          '%d: OpenCL FP16, '
                          '%d: Myriad, '
                          '%d: Vulkan, '
                          '%d: CUDA, '
                          '%d: CUDA fp16 (half-float preprocess)' % targets)
      args, _ = parser.parse_known_args()
  
      if args.input_video and not os.path.isfile(args.input_video):
          raise OSError("Input video file does not exist")
      if not os.path.isfile(args.target_net):
          raise OSError("Target Net does not exist")
      if not os.path.isfile(args.search_net):
          raise OSError("Search Net does not exist")
      if not os.path.isfile(args.rpn_head):
          raise OSError("RPN Head Net does not exist")
  
      #Load the Networks
      target_net = cv.dnn.readNetFromONNX(args.target_net)
      target_net.setPreferableBackend(args.backend)
      target_net.setPreferableTarget(args.target)
      search_net = cv.dnn.readNetFromONNX(args.search_net)
      search_net.setPreferableBackend(args.backend)
      search_net.setPreferableTarget(args.target)
      rpn_head = cv.dnn.readNetFromONNX(args.rpn_head)
      rpn_head.setPreferableBackend(args.backend)
      rpn_head.setPreferableTarget(args.target)
      model = ModelBuilder(target_net, search_net, rpn_head)
      tracker = SiamRPNTracker(model)
  
      first_frame = True
      cv.namedWindow('SiamRPN++ Tracker', cv.WINDOW_AUTOSIZE)
      for frame in get_frames(args.input_video):
          if first_frame:
              try:
                  init_rect = cv.selectROI('SiamRPN++ Tracker', frame, False, False)
              except:
                  exit()
              tracker.init(frame, init_rect)
              first_frame = False
          else:
              outputs = tracker.track(frame)
              bbox = list(map(int, outputs['bbox']))
              x,y,w,h = bbox
              cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
          cv.imshow('SiamRPN++ Tracker', frame)
          key = cv.waitKey(1)
          if key == ord("q"):
              break
  
  if __name__ == '__main__':
      main()