Blame view

3rdparty/opencv-4.5.4/samples/python/houghlines.py 1.54 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  #!/usr/bin/python
  
  '''
  This example illustrates how to use Hough Transform to find lines
  
  Usage:
      houghlines.py [<image_name>]
      image argument defaults to pic1.png
  '''
  
  # Python 2/3 compatibility
  from __future__ import print_function
  
  import cv2 as cv
  import numpy as np
  
  import sys
  import math
  
  def main():
      try:
          fn = sys.argv[1]
      except IndexError:
          fn = 'pic1.png'
  
      src = cv.imread(cv.samples.findFile(fn))
      dst = cv.Canny(src, 50, 200)
      cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)
  
      if True: # HoughLinesP
          lines = cv.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
          a, b, _c = lines.shape
          for i in range(a):
              cv.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv.LINE_AA)
  
      else:    # HoughLines
          lines = cv.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
          if lines is not None:
              a, b, _c = lines.shape
              for i in range(a):
                  rho = lines[i][0][0]
                  theta = lines[i][0][1]
                  a = math.cos(theta)
                  b = math.sin(theta)
                  x0, y0 = a*rho, b*rho
                  pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
                  pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
                  cv.line(cdst, pt1, pt2, (0, 0, 255), 3, cv.LINE_AA)
  
      cv.imshow("detected lines", cdst)
  
      cv.imshow("source", src)
      cv.waitKey(0)
      print('Done')
  
  
  if __name__ == '__main__':
      print(__doc__)
      main()
      cv.destroyAllWindows()