Blame view

3rdparty/opencv-4.5.4/samples/python/stitching_detailed.py 19.7 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
  """
  Stitching sample (advanced)
  ===========================
  
  Show how to use Stitcher API from python.
  """
  
  # Python 2/3 compatibility
  from __future__ import print_function
  
  import argparse
  from collections import OrderedDict
  
  import cv2 as cv
  import numpy as np
  
  EXPOS_COMP_CHOICES = OrderedDict()
  EXPOS_COMP_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS
  EXPOS_COMP_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN
  EXPOS_COMP_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS
  EXPOS_COMP_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS
  EXPOS_COMP_CHOICES['no'] = cv.detail.ExposureCompensator_NO
  
  BA_COST_CHOICES = OrderedDict()
  BA_COST_CHOICES['ray'] = cv.detail_BundleAdjusterRay
  BA_COST_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj
  BA_COST_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial
  BA_COST_CHOICES['no'] = cv.detail_NoBundleAdjuster
  
  FEATURES_FIND_CHOICES = OrderedDict()
  try:
      cv.xfeatures2d_SURF.create() # check if the function can be called
      FEATURES_FIND_CHOICES['surf'] = cv.xfeatures2d_SURF.create
  except (AttributeError, cv.error) as e:
      print("SURF not available")
  # if SURF not available, ORB is default
  FEATURES_FIND_CHOICES['orb'] = cv.ORB.create
  try:
      FEATURES_FIND_CHOICES['sift'] = cv.xfeatures2d_SIFT.create
  except AttributeError:
      print("SIFT not available")
  try:
      FEATURES_FIND_CHOICES['brisk'] = cv.BRISK_create
  except AttributeError:
      print("BRISK not available")
  try:
      FEATURES_FIND_CHOICES['akaze'] = cv.AKAZE_create
  except AttributeError:
      print("AKAZE not available")
  
  SEAM_FIND_CHOICES = OrderedDict()
  SEAM_FIND_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR')
  SEAM_FIND_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD')
  SEAM_FIND_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM)
  SEAM_FIND_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
  
  ESTIMATOR_CHOICES = OrderedDict()
  ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator
  ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator
  
  WARP_CHOICES = (
      'spherical',
      'plane',
      'affine',
      'cylindrical',
      'fisheye',
      'stereographic',
      'compressedPlaneA2B1',
      'compressedPlaneA1.5B1',
      'compressedPlanePortraitA2B1',
      'compressedPlanePortraitA1.5B1',
      'paniniA2B1',
      'paniniA1.5B1',
      'paniniPortraitA2B1',
      'paniniPortraitA1.5B1',
      'mercator',
      'transverseMercator',
  )
  
  WAVE_CORRECT_CHOICES = OrderedDict()
  WAVE_CORRECT_CHOICES['horiz'] = cv.detail.WAVE_CORRECT_HORIZ
  WAVE_CORRECT_CHOICES['no'] = None
  WAVE_CORRECT_CHOICES['vert'] = cv.detail.WAVE_CORRECT_VERT
  
  BLEND_CHOICES = ('multiband', 'feather', 'no',)
  
  parser = argparse.ArgumentParser(
      prog="stitching_detailed.py", description="Rotation model images stitcher"
  )
  parser.add_argument(
      'img_names', nargs='+',
      help="Files to stitch", type=str
  )
  parser.add_argument(
      '--try_cuda',
      action='store',
      default=False,
      help="Try to use CUDA. The default value is no. All default values are for CPU mode.",
      type=bool, dest='try_cuda'
  )
  parser.add_argument(
      '--work_megapix', action='store', default=0.6,
      help="Resolution for image registration step. The default is 0.6 Mpx",
      type=float, dest='work_megapix'
  )
  parser.add_argument(
      '--features', action='store', default=list(FEATURES_FIND_CHOICES.keys())[0],
      help="Type of features used for images matching. The default is '%s'." % list(FEATURES_FIND_CHOICES.keys())[0],
      choices=FEATURES_FIND_CHOICES.keys(),
      type=str, dest='features'
  )
  parser.add_argument(
      '--matcher', action='store', default='homography',
      help="Matcher used for pairwise image matching. The default is 'homography'.",
      choices=('homography', 'affine'),
      type=str, dest='matcher'
  )
  parser.add_argument(
      '--estimator', action='store', default=list(ESTIMATOR_CHOICES.keys())[0],
      help="Type of estimator used for transformation estimation. The default is '%s'." % list(ESTIMATOR_CHOICES.keys())[0],
      choices=ESTIMATOR_CHOICES.keys(),
      type=str, dest='estimator'
  )
  parser.add_argument(
      '--match_conf', action='store',
      help="Confidence for feature matching step. The default is 0.3 for ORB and 0.65 for other feature types.",
      type=float, dest='match_conf'
  )
  parser.add_argument(
      '--conf_thresh', action='store', default=1.0,
      help="Threshold for two images are from the same panorama confidence.The default is 1.0.",
      type=float, dest='conf_thresh'
  )
  parser.add_argument(
      '--ba', action='store', default=list(BA_COST_CHOICES.keys())[0],
      help="Bundle adjustment cost function. The default is '%s'." % list(BA_COST_CHOICES.keys())[0],
      choices=BA_COST_CHOICES.keys(),
      type=str, dest='ba'
  )
  parser.add_argument(
      '--ba_refine_mask', action='store', default='xxxxx',
      help="Set refinement mask for bundle adjustment. It looks like 'x_xxx', "
           "where 'x' means refine respective parameter and '_' means don't refine, "
           "and has the following format:<fx><skew><ppx><aspect><ppy>. "
           "The default mask is 'xxxxx'. "
           "If bundle adjustment doesn't support estimation of selected parameter then "
           "the respective flag is ignored.",
      type=str, dest='ba_refine_mask'
  )
  parser.add_argument(
      '--wave_correct', action='store', default=list(WAVE_CORRECT_CHOICES.keys())[0],
      help="Perform wave effect correction. The default is '%s'" % list(WAVE_CORRECT_CHOICES.keys())[0],
      choices=WAVE_CORRECT_CHOICES.keys(),
      type=str, dest='wave_correct'
  )
  parser.add_argument(
      '--save_graph', action='store', default=None,
      help="Save matches graph represented in DOT language to <file_name> file.",
      type=str, dest='save_graph'
  )
  parser.add_argument(
      '--warp', action='store', default=WARP_CHOICES[0],
      help="Warp surface type. The default is '%s'." % WARP_CHOICES[0],
      choices=WARP_CHOICES,
      type=str, dest='warp'
  )
  parser.add_argument(
      '--seam_megapix', action='store', default=0.1,
      help="Resolution for seam estimation step. The default is 0.1 Mpx.",
      type=float, dest='seam_megapix'
  )
  parser.add_argument(
      '--seam', action='store', default=list(SEAM_FIND_CHOICES.keys())[0],
      help="Seam estimation method. The default is '%s'." % list(SEAM_FIND_CHOICES.keys())[0],
      choices=SEAM_FIND_CHOICES.keys(),
      type=str, dest='seam'
  )
  parser.add_argument(
      '--compose_megapix', action='store', default=-1,
      help="Resolution for compositing step. Use -1 for original resolution. The default is -1",
      type=float, dest='compose_megapix'
  )
  parser.add_argument(
      '--expos_comp', action='store', default=list(EXPOS_COMP_CHOICES.keys())[0],
      help="Exposure compensation method. The default is '%s'." % list(EXPOS_COMP_CHOICES.keys())[0],
      choices=EXPOS_COMP_CHOICES.keys(),
      type=str, dest='expos_comp'
  )
  parser.add_argument(
      '--expos_comp_nr_feeds', action='store', default=1,
      help="Number of exposure compensation feed.",
      type=np.int32, dest='expos_comp_nr_feeds'
  )
  parser.add_argument(
      '--expos_comp_nr_filtering', action='store', default=2,
      help="Number of filtering iterations of the exposure compensation gains.",
      type=float, dest='expos_comp_nr_filtering'
  )
  parser.add_argument(
      '--expos_comp_block_size', action='store', default=32,
      help="BLock size in pixels used by the exposure compensator. The default is 32.",
      type=np.int32, dest='expos_comp_block_size'
  )
  parser.add_argument(
      '--blend', action='store', default=BLEND_CHOICES[0],
      help="Blending method. The default is '%s'." % BLEND_CHOICES[0],
      choices=BLEND_CHOICES,
      type=str, dest='blend'
  )
  parser.add_argument(
      '--blend_strength', action='store', default=5,
      help="Blending strength from [0,100] range. The default is 5",
      type=np.int32, dest='blend_strength'
  )
  parser.add_argument(
      '--output', action='store', default='result.jpg',
      help="The default is 'result.jpg'",
      type=str, dest='output'
  )
  parser.add_argument(
      '--timelapse', action='store', default=None,
      help="Output warped images separately as frames of a time lapse movie, "
           "with 'fixed_' prepended to input file names.",
      type=str, dest='timelapse'
  )
  parser.add_argument(
      '--rangewidth', action='store', default=-1,
      help="uses range_width to limit number of images to match with.",
      type=int, dest='rangewidth'
  )
  
  __doc__ += '\n' + parser.format_help()
  
  
  def get_matcher(args):
      try_cuda = args.try_cuda
      matcher_type = args.matcher
      if args.match_conf is None:
          if args.features == 'orb':
              match_conf = 0.3
          else:
              match_conf = 0.65
      else:
          match_conf = args.match_conf
      range_width = args.rangewidth
      if matcher_type == "affine":
          matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
      elif range_width == -1:
          matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
      else:
          matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf)
      return matcher
  
  
  def get_compensator(args):
      expos_comp_type = EXPOS_COMP_CHOICES[args.expos_comp]
      expos_comp_nr_feeds = args.expos_comp_nr_feeds
      expos_comp_block_size = args.expos_comp_block_size
      # expos_comp_nr_filtering = args.expos_comp_nr_filtering
      if expos_comp_type == cv.detail.ExposureCompensator_CHANNELS:
          compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds)
          # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
      elif expos_comp_type == cv.detail.ExposureCompensator_CHANNELS_BLOCKS:
          compensator = cv.detail_BlocksChannelsCompensator(
              expos_comp_block_size, expos_comp_block_size,
              expos_comp_nr_feeds
          )
          # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
      else:
          compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type)
      return compensator
  
  
  def main():
      args = parser.parse_args()
      img_names = args.img_names
      print(img_names)
      work_megapix = args.work_megapix
      seam_megapix = args.seam_megapix
      compose_megapix = args.compose_megapix
      conf_thresh = args.conf_thresh
      ba_refine_mask = args.ba_refine_mask
      wave_correct = WAVE_CORRECT_CHOICES[args.wave_correct]
      if args.save_graph is None:
          save_graph = False
      else:
          save_graph = True
      warp_type = args.warp
      blend_type = args.blend
      blend_strength = args.blend_strength
      result_name = args.output
      if args.timelapse is not None:
          timelapse = True
          if args.timelapse == "as_is":
              timelapse_type = cv.detail.Timelapser_AS_IS
          elif args.timelapse == "crop":
              timelapse_type = cv.detail.Timelapser_CROP
          else:
              print("Bad timelapse method")
              exit()
      else:
          timelapse = False
      finder = FEATURES_FIND_CHOICES[args.features]()
      seam_work_aspect = 1
      full_img_sizes = []
      features = []
      images = []
      is_work_scale_set = False
      is_seam_scale_set = False
      is_compose_scale_set = False
      for name in img_names:
          full_img = cv.imread(cv.samples.findFile(name))
          if full_img is None:
              print("Cannot read image ", name)
              exit()
          full_img_sizes.append((full_img.shape[1], full_img.shape[0]))
          if work_megapix < 0:
              img = full_img
              work_scale = 1
              is_work_scale_set = True
          else:
              if is_work_scale_set is False:
                  work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1])))
                  is_work_scale_set = True
              img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT)
          if is_seam_scale_set is False:
              seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1])))
              seam_work_aspect = seam_scale / work_scale
              is_seam_scale_set = True
          img_feat = cv.detail.computeImageFeatures2(finder, img)
          features.append(img_feat)
          img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT)
          images.append(img)
  
      matcher = get_matcher(args)
      p = matcher.apply2(features)
      matcher.collectGarbage()
  
      if save_graph:
          with open(args.save_graph, 'w') as fh:
              fh.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))
  
      indices = cv.detail.leaveBiggestComponent(features, p, conf_thresh)
      img_subset = []
      img_names_subset = []
      full_img_sizes_subset = []
      for i in range(len(indices)):
          img_names_subset.append(img_names[indices[i, 0]])
          img_subset.append(images[indices[i, 0]])
          full_img_sizes_subset.append(full_img_sizes[indices[i, 0]])
      images = img_subset
      img_names = img_names_subset
      full_img_sizes = full_img_sizes_subset
      num_images = len(img_names)
      if num_images < 2:
          print("Need more images")
          exit()
  
      estimator = ESTIMATOR_CHOICES[args.estimator]()
      b, cameras = estimator.apply(features, p, None)
      if not b:
          print("Homography estimation failed.")
          exit()
      for cam in cameras:
          cam.R = cam.R.astype(np.float32)
  
      adjuster = BA_COST_CHOICES[args.ba]()
      adjuster.setConfThresh(1)
      refine_mask = np.zeros((3, 3), np.uint8)
      if ba_refine_mask[0] == 'x':
          refine_mask[0, 0] = 1
      if ba_refine_mask[1] == 'x':
          refine_mask[0, 1] = 1
      if ba_refine_mask[2] == 'x':
          refine_mask[0, 2] = 1
      if ba_refine_mask[3] == 'x':
          refine_mask[1, 1] = 1
      if ba_refine_mask[4] == 'x':
          refine_mask[1, 2] = 1
      adjuster.setRefinementMask(refine_mask)
      b, cameras = adjuster.apply(features, p, cameras)
      if not b:
          print("Camera parameters adjusting failed.")
          exit()
      focals = []
      for cam in cameras:
          focals.append(cam.focal)
      focals.sort()
      if len(focals) % 2 == 1:
          warped_image_scale = focals[len(focals) // 2]
      else:
          warped_image_scale = (focals[len(focals) // 2] + focals[len(focals) // 2 - 1]) / 2
      if wave_correct is not None:
          rmats = []
          for cam in cameras:
              rmats.append(np.copy(cam.R))
          rmats = cv.detail.waveCorrect(rmats, wave_correct)
          for idx, cam in enumerate(cameras):
              cam.R = rmats[idx]
      corners = []
      masks_warped = []
      images_warped = []
      sizes = []
      masks = []
      for i in range(0, num_images):
          um = cv.UMat(255 * np.ones((images[i].shape[0], images[i].shape[1]), np.uint8))
          masks.append(um)
  
      warper = cv.PyRotationWarper(warp_type, warped_image_scale * seam_work_aspect)  # warper could be nullptr?
      for idx in range(0, num_images):
          K = cameras[idx].K().astype(np.float32)
          swa = seam_work_aspect
          K[0, 0] *= swa
          K[0, 2] *= swa
          K[1, 1] *= swa
          K[1, 2] *= swa
          corner, image_wp = warper.warp(images[idx], K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT)
          corners.append(corner)
          sizes.append((image_wp.shape[1], image_wp.shape[0]))
          images_warped.append(image_wp)
          p, mask_wp = warper.warp(masks[idx], K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT)
          masks_warped.append(mask_wp.get())
  
      images_warped_f = []
      for img in images_warped:
          imgf = img.astype(np.float32)
          images_warped_f.append(imgf)
  
      compensator = get_compensator(args)
      compensator.feed(corners=corners, images=images_warped, masks=masks_warped)
  
      seam_finder = SEAM_FIND_CHOICES[args.seam]
      masks_warped = seam_finder.find(images_warped_f, corners, masks_warped)
      compose_scale = 1
      corners = []
      sizes = []
      blender = None
      timelapser = None
      # https://github.com/opencv/opencv/blob/master/samples/cpp/stitching_detailed.cpp#L725 ?
      for idx, name in enumerate(img_names):
          full_img = cv.imread(name)
          if not is_compose_scale_set:
              if compose_megapix > 0:
                  compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1])))
              is_compose_scale_set = True
              compose_work_aspect = compose_scale / work_scale
              warped_image_scale *= compose_work_aspect
              warper = cv.PyRotationWarper(warp_type, warped_image_scale)
              for i in range(0, len(img_names)):
                  cameras[i].focal *= compose_work_aspect
                  cameras[i].ppx *= compose_work_aspect
                  cameras[i].ppy *= compose_work_aspect
                  sz = (int(round(full_img_sizes[i][0] * compose_scale)),
                        int(round(full_img_sizes[i][1] * compose_scale)))
                  K = cameras[i].K().astype(np.float32)
                  roi = warper.warpRoi(sz, K, cameras[i].R)
                  corners.append(roi[0:2])
                  sizes.append(roi[2:4])
          if abs(compose_scale - 1) > 1e-1:
              img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale,
                              interpolation=cv.INTER_LINEAR_EXACT)
          else:
              img = full_img
          _img_size = (img.shape[1], img.shape[0])
          K = cameras[idx].K().astype(np.float32)
          corner, image_warped = warper.warp(img, K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT)
          mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8)
          p, mask_warped = warper.warp(mask, K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT)
          compensator.apply(idx, corners[idx], image_warped, mask_warped)
          image_warped_s = image_warped.astype(np.int16)
          dilated_mask = cv.dilate(masks_warped[idx], None)
          seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT)
          mask_warped = cv.bitwise_and(seam_mask, mask_warped)
          if blender is None and not timelapse:
              blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
              dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes)
              blend_width = np.sqrt(dst_sz[2] * dst_sz[3]) * blend_strength / 100
              if blend_width < 1:
                  blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
              elif blend_type == "multiband":
                  blender = cv.detail_MultiBandBlender()
                  blender.setNumBands((np.log(blend_width) / np.log(2.) - 1.).astype(np.int))
              elif blend_type == "feather":
                  blender = cv.detail_FeatherBlender()
                  blender.setSharpness(1. / blend_width)
              blender.prepare(dst_sz)
          elif timelapser is None and timelapse:
              timelapser = cv.detail.Timelapser_createDefault(timelapse_type)
              timelapser.initialize(corners, sizes)
          if timelapse:
              ma_tones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8)
              timelapser.process(image_warped_s, ma_tones, corners[idx])
              pos_s = img_names[idx].rfind("/")
              if pos_s == -1:
                  fixed_file_name = "fixed_" + img_names[idx]
              else:
                  fixed_file_name = img_names[idx][:pos_s + 1] + "fixed_" + img_names[idx][pos_s + 1:]
              cv.imwrite(fixed_file_name, timelapser.getDst())
          else:
              blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx])
      if not timelapse:
          result = None
          result_mask = None
          result, result_mask = blender.blend(result, result_mask)
          cv.imwrite(result_name, result)
          zoom_x = 600.0 / result.shape[1]
          dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
          dst = cv.resize(dst, dsize=None, fx=zoom_x, fy=zoom_x)
          cv.imshow(result_name, dst)
          cv.waitKey()
  
      print("Done")
  
  
  if __name__ == '__main__':
      print(__doc__)
      main()
      cv.destroyAllWindows()