Blame view

3rdparty/opencv-4.5.4/modules/calib3d/misc/python/test/test_calibration.py 2.31 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  #!/usr/bin/env python
  
  '''
  camera calibration for distorted images with chess board samples
  reads distorted images, calculates the calibration and write undistorted images
  '''
  
  # Python 2/3 compatibility
  from __future__ import print_function
  
  import numpy as np
  import cv2 as cv
  
  from tests_common import NewOpenCVTests
  
  class calibration_test(NewOpenCVTests):
  
      def test_calibration(self):
          img_names = []
          for i in range(1, 15):
              if i < 10:
                  img_names.append('samples/data/left0{}.jpg'.format(str(i)))
              elif i != 10:
                  img_names.append('samples/data/left{}.jpg'.format(str(i)))
  
          square_size = 1.0
          pattern_size = (9, 6)
          pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
          pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
          pattern_points *= square_size
  
          obj_points = []
          img_points = []
          h, w = 0, 0
          for fn in img_names:
              img = self.get_sample(fn, 0)
              if img is None:
                  continue
  
              h, w = img.shape[:2]
              found, corners = cv.findChessboardCorners(img, pattern_size)
              if found:
                  term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
                  cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
  
              if not found:
                  continue
  
              img_points.append(corners.reshape(-1, 2))
              obj_points.append(pattern_points)
  
          # calculate camera distortion
          rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)
  
          eps = 0.01
          normCamEps = 10.0
          normDistEps = 0.05
  
          cameraMatrixTest = [[ 532.80992189,    0.,          342.4952186 ],
           [   0.,         532.93346422,  233.8879292 ],
           [   0.,            0.,            1.        ]]
  
          distCoeffsTest = [ -2.81325576e-01,   2.91130406e-02,
             1.21234330e-03,  -1.40825372e-04, 1.54865844e-01]
  
          self.assertLess(abs(rms - 0.196334638034), eps)
          self.assertLess(cv.norm(camera_matrix - cameraMatrixTest, cv.NORM_L1), normCamEps)
          self.assertLess(cv.norm(dist_coefs - distCoeffsTest, cv.NORM_L1), normDistEps)
  
  
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()