Blame view

3rdparty/opencv-4.5.4/modules/python/test/test_kmeans.py 1.86 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  #!/usr/bin/env python
  
  '''
  K-means clusterization test
  '''
  
  # Python 2/3 compatibility
  from __future__ import print_function
  
  import numpy as np
  import cv2 as cv
  from numpy import random
  import sys
  PY3 = sys.version_info[0] == 3
  if PY3:
      xrange = range
  
  from tests_common import NewOpenCVTests
  
  def make_gaussians(cluster_n, img_size):
      points = []
      ref_distrs = []
      sizes = []
      for _ in xrange(cluster_n):
          mean = (0.1 + 0.8*random.rand(2)) * img_size
          a = (random.rand(2, 2)-0.5)*img_size*0.1
          cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
          n = 100 + random.randint(900)
          pts = random.multivariate_normal(mean, cov, n)
          points.append( pts )
          ref_distrs.append( (mean, cov) )
          sizes.append(n)
      points = np.float32( np.vstack(points) )
      return points, ref_distrs, sizes
  
  def getMainLabelConfidence(labels, nLabels):
  
      n = len(labels)
      labelsDict = dict.fromkeys(range(nLabels), 0)
      labelsConfDict = dict.fromkeys(range(nLabels))
  
      for i in range(n):
          labelsDict[labels[i][0]] += 1
  
      for i in range(nLabels):
          labelsConfDict[i] = float(labelsDict[i]) / n
  
      return max(labelsConfDict.values())
  
  class kmeans_test(NewOpenCVTests):
  
      def test_kmeans(self):
  
          np.random.seed(10)
  
          cluster_n = 5
          img_size = 512
  
          points, _, clusterSizes = make_gaussians(cluster_n, img_size)
  
          term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1)
          _ret, labels, centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0)
  
          self.assertEqual(len(centers), cluster_n)
  
          offset = 0
          for i in range(cluster_n):
              confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n)
              offset += clusterSizes[i]
              self.assertGreater(confidence, 0.9)
  
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()