Blame view

3rdparty/opencv-4.5.4/modules/features2d/misc/java/test/SIMPLEBLOBFeatureDetectorTest.java 4.57 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  package org.opencv.test.features2d;
  
  import java.util.Arrays;
  
  import org.opencv.core.CvType;
  import org.opencv.core.Mat;
  import org.opencv.core.MatOfKeyPoint;
  import org.opencv.core.Point;
  import org.opencv.core.Scalar;
  import org.opencv.core.KeyPoint;
  import org.opencv.test.OpenCVTestCase;
  import org.opencv.test.OpenCVTestRunner;
  import org.opencv.imgproc.Imgproc;
  import org.opencv.features2d.Feature2D;
  import org.opencv.features2d.SimpleBlobDetector;
  
  public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
  
      Feature2D detector;
      int matSize;
      KeyPoint[] truth;
  
      private Mat getMaskImg() {
          Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
          Mat right = mask.submat(0, matSize, matSize / 2, matSize);
          right.setTo(new Scalar(0));
          return mask;
      }
  
      private Mat getTestImg() {
  
          int center = matSize / 2;
          int offset = 40;
  
          Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
          Imgproc.circle(img, new Point(center - offset, center), 24, new Scalar(0), -1);
          Imgproc.circle(img, new Point(center + offset, center), 20, new Scalar(50), -1);
          Imgproc.circle(img, new Point(center, center - offset), 18, new Scalar(100), -1);
          Imgproc.circle(img, new Point(center, center + offset), 14, new Scalar(150), -1);
          Imgproc.circle(img, new Point(center, center), 10, new Scalar(200), -1);
          return img;
      }
  
      @Override
      protected void setUp() throws Exception {
          super.setUp();
          detector = SimpleBlobDetector.create();
          matSize = 200;
          truth = new KeyPoint[] {
                  new KeyPoint( 140, 100, 41.036568f, -1, 0, 0, -1),
                  new KeyPoint( 60, 100, 48.538486f, -1, 0, 0, -1),
                  new KeyPoint(100, 60, 36.769554f, -1, 0, 0, -1),
                  new KeyPoint(100, 140, 28.635643f, -1, 0, 0, -1),
                  new KeyPoint(100, 100, 20.880613f, -1, 0, 0, -1)
              };
      }
  
      public void testCreate() {
          assertNotNull(detector);
      }
  
      public void testDetectListOfMatListOfListOfKeyPoint() {
          fail("Not yet implemented");
      }
  
      public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
          fail("Not yet implemented");
      }
  
      public void testDetectMatListOfKeyPoint() {
          Mat img = getTestImg();
          MatOfKeyPoint keypoints = new MatOfKeyPoint();
  
          detector.detect(img, keypoints);
  
          assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS);
      }
  
      public void testDetectMatListOfKeyPointMat() {
          Mat img = getTestImg();
          Mat mask = getMaskImg();
          MatOfKeyPoint keypoints = new MatOfKeyPoint();
  
          detector.detect(img, keypoints, mask);
  
          assertListKeyPointEquals(Arrays.asList(truth[1]), keypoints.toList(), EPS);
      }
  
      public void testEmpty() {
  //        assertFalse(detector.empty());
          fail("Not yet implemented");
      }
  
      public void testRead() {
          Mat img = getTestImg();
  
          MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
          detector.detect(img, keypoints1);
  
          String filename = OpenCVTestRunner.getTempFileName("yml");
          writeFile(filename, "%YAML:1.0\nthresholdStep: 10\nminThreshold: 50\nmaxThreshold: 220\nminRepeatability: 2\nfilterByArea: true\nminArea: 800\nmaxArea: 5000\n");
          detector.read(filename);
  
          MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
          detector.detect(img, keypoints2);
  
          assertTrue(keypoints2.total() <= keypoints1.total());
      }
  
      public void testWrite() {
          String filename = OpenCVTestRunner.getTempFileName("xml");
  
          detector.write(filename);
  
          String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<format>3</format>\n<thresholdStep>10.</thresholdStep>\n<minThreshold>50.</minThreshold>\n<maxThreshold>220.</maxThreshold>\n<minRepeatability>2</minRepeatability>\n<minDistBetweenBlobs>10.</minDistBetweenBlobs>\n<filterByColor>1</filterByColor>\n<blobColor>0</blobColor>\n<filterByArea>1</filterByArea>\n<minArea>25.</minArea>\n<maxArea>5000.</maxArea>\n<filterByCircularity>0</filterByCircularity>\n<minCircularity>8.0000001192092896e-01</minCircularity>\n<maxCircularity>3.4028234663852886e+38</maxCircularity>\n<filterByInertia>1</filterByInertia>\n<minInertiaRatio>1.0000000149011612e-01</minInertiaRatio>\n<maxInertiaRatio>3.4028234663852886e+38</maxInertiaRatio>\n<filterByConvexity>1</filterByConvexity>\n<minConvexity>9.4999998807907104e-01</minConvexity>\n<maxConvexity>3.4028234663852886e+38</maxConvexity>\n</opencv_storage>\n";
          assertEquals(truth, readFile(filename));
      }
  }