Blame view

3rdparty/opencv-4.5.4/samples/cpp/neural_network.cpp 1.68 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
  #include <opencv2/ml/ml.hpp>
  
  using namespace std;
  using namespace cv;
  using namespace cv::ml;
  
  int main()
  {
      //create random training data
      Mat_<float> data(100, 100);
      randn(data, Mat::zeros(1, 1, data.type()), Mat::ones(1, 1, data.type()));
  
      //half of the samples for each class
      Mat_<float> responses(data.rows, 2);
      for (int i = 0; i<data.rows; ++i)
      {
          if (i < data.rows/2)
          {
              responses(i, 0) = 1;
              responses(i, 1) = 0;
          }
          else
          {
              responses(i, 0) = 0;
              responses(i, 1) = 1;
          }
      }
  
      /*
      //example code for just a single response (regression)
      Mat_<float> responses(data.rows, 1);
      for (int i=0; i<responses.rows; ++i)
          responses(i, 0) = i < responses.rows / 2 ? 0 : 1;
      */
  
      //create the neural network
      Mat_<int> layerSizes(1, 3);
      layerSizes(0, 0) = data.cols;
      layerSizes(0, 1) = 20;
      layerSizes(0, 2) = responses.cols;
  
      Ptr<ANN_MLP> network = ANN_MLP::create();
      network->setLayerSizes(layerSizes);
      network->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0.1, 0.1);
      network->setTrainMethod(ANN_MLP::BACKPROP, 0.1, 0.1);
      Ptr<TrainData> trainData = TrainData::create(data, ROW_SAMPLE, responses);
  
      network->train(trainData);
      if (network->isTrained())
      {
          printf("Predict one-vector:\n");
          Mat result;
          network->predict(Mat::ones(1, data.cols, data.type()), result);
          cout << result << endl;
  
          printf("Predict training data:\n");
          for (int i=0; i<data.rows; ++i)
          {
              network->predict(data.row(i), result);
              cout << result << endl;
          }
      }
  
      return 0;
  }