Blame view

3rdparty/opencv-4.5.4/samples/dnn/README.md 5.05 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  # OpenCV deep learning module samples
  
  ## Model Zoo
  
  Check [a wiki](https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV) for a list of tested models.
  
  If OpenCV is built with [Intel's Inference Engine support](https://github.com/opencv/opencv/wiki/Intel%27s-Deep-Learning-Inference-Engine-backend) you can use [Intel's pre-trained](https://github.com/opencv/open_model_zoo) models.
  
  There are different preprocessing parameters such mean subtraction or scale factors for different models.
  You may check the most popular models and their parameters at [models.yml](https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml) configuration file. It might be also used for aliasing samples parameters. In example,
  
  ```bash
  python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt
  ```
  
  Check `-h` option to know which values are used by default:
  
  ```bash
  python object_detection.py opencv_fd -h
  ```
  
  ### Sample models
  
  You can download sample models using ```download_models.py```. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:
  
  ```bash
  python download_models.py --save_dir FaceDetector opencv_fd
  ```
  
  You can use default configuration files adopted for OpenCV from [here](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn).
  
  You also can use the script to download necessary files from your code. Assume you have the following code inside ```your_script.py```:
  
  ```python
  from download_models import downloadFile
  
  filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
  filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
  print(filepath1)
  print(filepath2)
  # Your code
  ```
  
  By running the following commands, you will get **MobileNetSSD_deploy.caffemodel** file:
  ```bash
  export OPENCV_DOWNLOAD_DATA_PATH=download_folder
  python your_script.py
  ```
  
  **Note** that you can provide a directory using **save_dir** parameter or via **OPENCV_SAVE_DIR** environment variable.
  
  #### Face detection
  [An origin model](https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector)
  with single precision floating point weights has been quantized using [TensorFlow framework](https://www.tensorflow.org/).
  To achieve the best accuracy run the model on BGR images resized to `300x300` applying mean subtraction
  of values `(104, 177, 123)` for each blue, green and red channels correspondingly.
  
  The following are accuracy metrics obtained using [COCO object detection evaluation
  tool](http://cocodataset.org/#detections-eval) on [FDDB dataset](http://vis-www.cs.umass.edu/fddb/)
  (see [script](https://github.com/opencv/opencv/blob/master/modules/dnn/misc/face_detector_accuracy.py))
  applying resize to `300x300` and keeping an origin images' sizes.
  ```
  AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
  AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
  --------------------------------------------------|-----------|----------------|-----------|----------------|
  AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
  AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
  AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
  AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
  AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
  AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
  AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
  AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
  AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
  AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
  AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
  AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |
  ```
  
  ## References
  * [Models downloading script](https://github.com/opencv/opencv/samples/dnn/download_models.py)
  * [Configuration files adopted for OpenCV](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn)
  * [How to import models from TensorFlow Object Detection API](https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API)
  * [Names of classes from different datasets](https://github.com/opencv/opencv/tree/master/samples/data/dnn)