Blame view

3rdparty/opencv-4.5.4/samples/dnn/tf_text_graph_common.py 9.82 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
  def tokenize(s):
      tokens = []
      token = ""
      isString = False
      isComment = False
      for symbol in s:
          isComment = (isComment and symbol != '\n') or (not isString and symbol == '#')
          if isComment:
              continue
  
          if symbol == ' ' or symbol == '\t' or symbol == '\r' or symbol == '\'' or \
             symbol == '\n' or symbol == ':' or symbol == '\"' or symbol == ';' or \
             symbol == ',':
  
              if (symbol == '\"' or symbol == '\'') and isString:
                  tokens.append(token)
                  token = ""
              else:
                  if isString:
                      token += symbol
                  elif token:
                      tokens.append(token)
                      token = ""
              isString = (symbol == '\"' or symbol == '\'') ^ isString
  
          elif symbol == '{' or symbol == '}' or symbol == '[' or symbol == ']':
              if token:
                  tokens.append(token)
                  token = ""
              tokens.append(symbol)
          else:
              token += symbol
      if token:
          tokens.append(token)
      return tokens
  
  
  def parseMessage(tokens, idx):
      msg = {}
      assert(tokens[idx] == '{')
  
      isArray = False
      while True:
          if not isArray:
              idx += 1
              if idx < len(tokens):
                  fieldName = tokens[idx]
              else:
                  return None
              if fieldName == '}':
                  break
  
          idx += 1
          fieldValue = tokens[idx]
  
          if fieldValue == '{':
              embeddedMsg, idx = parseMessage(tokens, idx)
              if fieldName in msg:
                  msg[fieldName].append(embeddedMsg)
              else:
                  msg[fieldName] = [embeddedMsg]
          elif fieldValue == '[':
              isArray = True
          elif fieldValue == ']':
              isArray = False
          else:
              if fieldName in msg:
                  msg[fieldName].append(fieldValue)
              else:
                  msg[fieldName] = [fieldValue]
      return msg, idx
  
  
  def readTextMessage(filePath):
      if not filePath:
          return {}
      with open(filePath, 'rt') as f:
          content = f.read()
  
      tokens = tokenize('{' + content + '}')
      msg = parseMessage(tokens, 0)
      return msg[0] if msg else {}
  
  
  def listToTensor(values):
      if all([isinstance(v, float) for v in values]):
          dtype = 'DT_FLOAT'
          field = 'float_val'
      elif all([isinstance(v, int) for v in values]):
          dtype = 'DT_INT32'
          field = 'int_val'
      else:
          raise Exception('Wrong values types')
  
      msg = {
          'tensor': {
              'dtype': dtype,
              'tensor_shape': {
                  'dim': {
                      'size': len(values)
                  }
              }
          }
      }
      msg['tensor'][field] = values
      return msg
  
  
  def addConstNode(name, values, graph_def):
      node = NodeDef()
      node.name = name
      node.op = 'Const'
      node.addAttr('value', values)
      graph_def.node.extend([node])
  
  
  def addSlice(inp, out, begins, sizes, graph_def):
      beginsNode = NodeDef()
      beginsNode.name = out + '/begins'
      beginsNode.op = 'Const'
      beginsNode.addAttr('value', begins)
      graph_def.node.extend([beginsNode])
  
      sizesNode = NodeDef()
      sizesNode.name = out + '/sizes'
      sizesNode.op = 'Const'
      sizesNode.addAttr('value', sizes)
      graph_def.node.extend([sizesNode])
  
      sliced = NodeDef()
      sliced.name = out
      sliced.op = 'Slice'
      sliced.input.append(inp)
      sliced.input.append(beginsNode.name)
      sliced.input.append(sizesNode.name)
      graph_def.node.extend([sliced])
  
  
  def addReshape(inp, out, shape, graph_def):
      shapeNode = NodeDef()
      shapeNode.name = out + '/shape'
      shapeNode.op = 'Const'
      shapeNode.addAttr('value', shape)
      graph_def.node.extend([shapeNode])
  
      reshape = NodeDef()
      reshape.name = out
      reshape.op = 'Reshape'
      reshape.input.append(inp)
      reshape.input.append(shapeNode.name)
      graph_def.node.extend([reshape])
  
  
  def addSoftMax(inp, out, graph_def):
      softmax = NodeDef()
      softmax.name = out
      softmax.op = 'Softmax'
      softmax.addAttr('axis', -1)
      softmax.input.append(inp)
      graph_def.node.extend([softmax])
  
  
  def addFlatten(inp, out, graph_def):
      flatten = NodeDef()
      flatten.name = out
      flatten.op = 'Flatten'
      flatten.input.append(inp)
      graph_def.node.extend([flatten])
  
  
  class NodeDef:
      def __init__(self):
          self.input = []
          self.name = ""
          self.op = ""
          self.attr = {}
  
      def addAttr(self, key, value):
          assert(not key in self.attr)
          if isinstance(value, bool):
              self.attr[key] = {'b': value}
          elif isinstance(value, int):
              self.attr[key] = {'i': value}
          elif isinstance(value, float):
              self.attr[key] = {'f': value}
          elif isinstance(value, str):
              self.attr[key] = {'s': value}
          elif isinstance(value, list):
              self.attr[key] = listToTensor(value)
          else:
              raise Exception('Unknown type of attribute ' + key)
  
      def Clear(self):
          self.input = []
          self.name = ""
          self.op = ""
          self.attr = {}
  
  
  class GraphDef:
      def __init__(self):
          self.node = []
  
      def save(self, filePath):
          with open(filePath, 'wt') as f:
  
              def printAttr(d, indent):
                  indent = ' ' * indent
                  for key, value in sorted(d.items(), key=lambda x:x[0].lower()):
                      value = value if isinstance(value, list) else [value]
                      for v in value:
                          if isinstance(v, dict):
                              f.write(indent + key + ' {\n')
                              printAttr(v, len(indent) + 2)
                              f.write(indent + '}\n')
                          else:
                              isString = False
                              if isinstance(v, str) and not v.startswith('DT_'):
                                  try:
                                      float(v)
                                  except:
                                      isString = True
  
                              if isinstance(v, bool):
                                  printed = 'true' if v else 'false'
                              elif v == 'true' or v == 'false':
                                  printed = 'true' if v == 'true' else 'false'
                              elif isString:
                                  printed = '\"%s\"' % v
                              else:
                                  printed = str(v)
                              f.write(indent + key + ': ' + printed + '\n')
  
              for node in self.node:
                  f.write('node {\n')
                  f.write('  name: \"%s\"\n' % node.name)
                  f.write('  op: \"%s\"\n' % node.op)
                  for inp in node.input:
                      f.write('  input: \"%s\"\n' % inp)
                  for key, value in sorted(node.attr.items(), key=lambda x:x[0].lower()):
                      f.write('  attr {\n')
                      f.write('    key: \"%s\"\n' % key)
                      f.write('    value {\n')
                      printAttr(value, 6)
                      f.write('    }\n')
                      f.write('  }\n')
                  f.write('}\n')
  
  
  def parseTextGraph(filePath):
      msg = readTextMessage(filePath)
  
      graph = GraphDef()
      for node in msg['node']:
          graphNode = NodeDef()
          graphNode.name = node['name'][0]
          graphNode.op = node['op'][0]
          graphNode.input = node['input'] if 'input' in node else []
  
          if 'attr' in node:
              for attr in node['attr']:
                  graphNode.attr[attr['key'][0]] = attr['value'][0]
  
          graph.node.append(graphNode)
      return graph
  
  
  # Removes Identity nodes
  def removeIdentity(graph_def):
      identities = {}
      for node in graph_def.node:
          if node.op == 'Identity' or node.op == 'IdentityN':
              inp = node.input[0]
              if inp in identities:
                  identities[node.name] = identities[inp]
              else:
                  identities[node.name] = inp
              graph_def.node.remove(node)
  
      for node in graph_def.node:
          for i in range(len(node.input)):
              if node.input[i] in identities:
                  node.input[i] = identities[node.input[i]]
  
  
  def removeUnusedNodesAndAttrs(to_remove, graph_def):
      unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
                     'Index', 'Tperm', 'is_training', 'Tpaddings']
  
      removedNodes = []
  
      for i in reversed(range(len(graph_def.node))):
          op = graph_def.node[i].op
          name = graph_def.node[i].name
  
          if to_remove(name, op):
              if op != 'Const':
                  removedNodes.append(name)
  
              del graph_def.node[i]
          else:
              for attr in unusedAttrs:
                  if attr in graph_def.node[i].attr:
                      del graph_def.node[i].attr[attr]
  
      # Remove references to removed nodes except Const nodes.
      for node in graph_def.node:
          for i in reversed(range(len(node.input))):
              if node.input[i] in removedNodes:
                  del node.input[i]
  
  
  def writeTextGraph(modelPath, outputPath, outNodes):
      try:
          import cv2 as cv
  
          cv.dnn.writeTextGraph(modelPath, outputPath)
      except:
          import tensorflow as tf
          from tensorflow.tools.graph_transforms import TransformGraph
  
          with tf.gfile.FastGFile(modelPath, 'rb') as f:
              graph_def = tf.GraphDef()
              graph_def.ParseFromString(f.read())
  
              graph_def = TransformGraph(graph_def, ['image_tensor'], outNodes, ['sort_by_execution_order'])
  
              for node in graph_def.node:
                  if node.op == 'Const':
                      if 'value' in node.attr and node.attr['value'].tensor.tensor_content:
                          node.attr['value'].tensor.tensor_content = b''
  
          tf.train.write_graph(graph_def, "", outputPath, as_text=True)