Blame view

3rdparty/opencv-4.5.4/samples/python/asift.py 5.28 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  #!/usr/bin/env python
  
  '''
  Affine invariant feature-based image matching sample.
  
  This sample is similar to find_obj.py, but uses the affine transformation
  space sampling technique, called ASIFT [1]. While the original implementation
  is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC
  is used to reject outliers. Threading is used for faster affine sampling.
  
  [1] http://www.ipol.im/pub/algo/my_affine_sift/
  
  USAGE
    asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ]
  
    --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
                 to feature name to use Flann-based matcher instead bruteforce.
  
    Press left mouse button on a feature point to see its matching point.
  '''
  
  # Python 2/3 compatibility
  from __future__ import print_function
  
  import numpy as np
  import cv2 as cv
  
  # built-in modules
  import itertools as it
  from multiprocessing.pool import ThreadPool
  
  # local modules
  from common import Timer
  from find_obj import init_feature, filter_matches, explore_match
  
  
  def affine_skew(tilt, phi, img, mask=None):
      '''
      affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai
  
      Ai - is an affine transform matrix from skew_img to img
      '''
      h, w = img.shape[:2]
      if mask is None:
          mask = np.zeros((h, w), np.uint8)
          mask[:] = 255
      A = np.float32([[1, 0, 0], [0, 1, 0]])
      if phi != 0.0:
          phi = np.deg2rad(phi)
          s, c = np.sin(phi), np.cos(phi)
          A = np.float32([[c,-s], [ s, c]])
          corners = [[0, 0], [w, 0], [w, h], [0, h]]
          tcorners = np.int32( np.dot(corners, A.T) )
          x, y, w, h = cv.boundingRect(tcorners.reshape(1,-1,2))
          A = np.hstack([A, [[-x], [-y]]])
          img = cv.warpAffine(img, A, (w, h), flags=cv.INTER_LINEAR, borderMode=cv.BORDER_REPLICATE)
      if tilt != 1.0:
          s = 0.8*np.sqrt(tilt*tilt-1)
          img = cv.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
          img = cv.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv.INTER_NEAREST)
          A[0] /= tilt
      if phi != 0.0 or tilt != 1.0:
          h, w = img.shape[:2]
          mask = cv.warpAffine(mask, A, (w, h), flags=cv.INTER_NEAREST)
      Ai = cv.invertAffineTransform(A)
      return img, mask, Ai
  
  
  def affine_detect(detector, img, mask=None, pool=None):
      '''
      affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs
  
      Apply a set of affine transformations to the image, detect keypoints and
      reproject them into initial image coordinates.
      See http://www.ipol.im/pub/algo/my_affine_sift/ for the details.
  
      ThreadPool object may be passed to speedup the computation.
      '''
      params = [(1.0, 0.0)]
      for t in 2**(0.5*np.arange(1,6)):
          for phi in np.arange(0, 180, 72.0 / t):
              params.append((t, phi))
  
      def f(p):
          t, phi = p
          timg, tmask, Ai = affine_skew(t, phi, img)
          keypoints, descrs = detector.detectAndCompute(timg, tmask)
          for kp in keypoints:
              x, y = kp.pt
              kp.pt = tuple( np.dot(Ai, (x, y, 1)) )
          if descrs is None:
              descrs = []
          return keypoints, descrs
  
      keypoints, descrs = [], []
      if pool is None:
          ires = it.imap(f, params)
      else:
          ires = pool.imap(f, params)
  
      for i, (k, d) in enumerate(ires):
          print('affine sampling: %d / %d\r' % (i+1, len(params)), end='')
          keypoints.extend(k)
          descrs.extend(d)
  
      print()
      return keypoints, np.array(descrs)
  
  
  def main():
      import sys, getopt
      opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
      opts = dict(opts)
      feature_name = opts.get('--feature', 'brisk-flann')
      try:
          fn1, fn2 = args
      except:
          fn1 = 'aero1.jpg'
          fn2 = 'aero3.jpg'
  
      img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
      img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
      detector, matcher = init_feature(feature_name)
  
      if img1 is None:
          print('Failed to load fn1:', fn1)
          sys.exit(1)
  
      if img2 is None:
          print('Failed to load fn2:', fn2)
          sys.exit(1)
  
      if detector is None:
          print('unknown feature:', feature_name)
          sys.exit(1)
  
      print('using', feature_name)
  
      pool=ThreadPool(processes = cv.getNumberOfCPUs())
      kp1, desc1 = affine_detect(detector, img1, pool=pool)
      kp2, desc2 = affine_detect(detector, img2, pool=pool)
      print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))
  
      def match_and_draw(win):
          with Timer('matching'):
              raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
          p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
          if len(p1) >= 4:
              H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0)
              print('%d / %d  inliers/matched' % (np.sum(status), len(status)))
              # do not draw outliers (there will be a lot of them)
              kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
          else:
              H, status = None, None
              print('%d matches found, not enough for homography estimation' % len(p1))
  
          explore_match(win, img1, img2, kp_pairs, None, H)
  
  
      match_and_draw('affine find_obj')
      cv.waitKey()
      print('Done')
  
  
  if __name__ == '__main__':
      print(__doc__)
      main()
      cv.destroyAllWindows()