Blame view

3rdparty/opencv-4.5.4/modules/dnn/misc/python/test/test_dnn.py 17.1 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
  #!/usr/bin/env python
  import os
  import cv2 as cv
  import numpy as np
  
  from tests_common import NewOpenCVTests, unittest
  
  def normAssert(test, a, b, msg=None, lInf=1e-5):
      test.assertLess(np.max(np.abs(a - b)), lInf, msg)
  
  def inter_area(box1, box2):
      x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2])
      y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3])
      return (x_max - x_min) * (y_max - y_min)
  
  def area(box):
      return (box[2] - box[0]) * (box[3] - box[1])
  
  def box2str(box):
      left, top = box[0], box[1]
      width, height = box[2] - left, box[3] - top
      return '[%f x %f from (%f, %f)]' % (width, height, left, top)
  
  def normAssertDetections(test, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes,
                   confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4):
      matchedRefBoxes = [False] * len(refBoxes)
      errMsg = ''
      for i in range(len(testBoxes)):
          testScore = testScores[i]
          if testScore < confThreshold:
              continue
  
          testClassId, testBox = testClassIds[i], testBoxes[i]
          matched = False
          for j in range(len(refBoxes)):
              if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \
                 abs(testScore - refScores[j]) < scores_diff:
                  interArea = inter_area(testBox, refBoxes[j])
                  iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea)
                  if abs(iou - 1.0) < boxes_iou_diff:
                      matched = True
                      matchedRefBoxes[j] = True
          if not matched:
              errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox))
  
      for i in range(len(refBoxes)):
          if (not matchedRefBoxes[i]) and refScores[i] > confThreshold:
              errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i]))
      if errMsg:
          test.fail(errMsg)
  
  def printParams(backend, target):
      backendNames = {
          cv.dnn.DNN_BACKEND_OPENCV: 'OCV',
          cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE'
      }
      targetNames = {
          cv.dnn.DNN_TARGET_CPU: 'CPU',
          cv.dnn.DNN_TARGET_OPENCL: 'OCL',
          cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16',
          cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD'
      }
      print('%s/%s' % (backendNames[backend], targetNames[target]))
  
  def getDefaultThreshold(target):
      if target == cv.dnn.DNN_TARGET_OPENCL_FP16 or target == cv.dnn.DNN_TARGET_MYRIAD:
          return 4e-3
      else:
          return 1e-5
  
  testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
  
  g_dnnBackendsAndTargets = None
  
  class dnn_test(NewOpenCVTests):
  
      def setUp(self):
          super(dnn_test, self).setUp()
  
          global g_dnnBackendsAndTargets
          if g_dnnBackendsAndTargets is None:
              g_dnnBackendsAndTargets = self.initBackendsAndTargets()
          self.dnnBackendsAndTargets = g_dnnBackendsAndTargets
  
      def initBackendsAndTargets(self):
          self.dnnBackendsAndTargets = [
              [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
          ]
  
          if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU):
              self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU])
          if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD):
              self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD])
  
          if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL():
              self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL])
              self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16])
              if cv.ocl_Device.getDefault().isIntel():
                  if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL):
                      self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL])
                  if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16):
                      self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16])
          return self.dnnBackendsAndTargets
  
      def find_dnn_file(self, filename, required=True):
          if not required:
              required = testdata_required
          return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()),
                                           os.environ['OPENCV_TEST_DATA_PATH']],
                                required=required)
  
      def checkIETarget(self, backend, target):
          proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt')
          model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel')
          net = cv.dnn.readNet(proto, model)
          net.setPreferableBackend(backend)
          net.setPreferableTarget(target)
          inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32)
          try:
              net.setInput(inp)
              net.forward()
          except BaseException as e:
              return False
          return True
  
      def test_getAvailableTargets(self):
          targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV)
          self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets)
  
      def test_blobFromImage(self):
          np.random.seed(324)
  
          width = 6
          height = 7
          scale = 1.0/127.5
          mean = (10, 20, 30)
  
          # Test arguments names.
          img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8)
          blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False)
          blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height),
                                           mean=mean, swapRB=True, crop=False)
          normAssert(self, blob, blob_args)
  
          # Test values.
          target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR)
          target = target.astype(np.float32)
          target = target[:,:,[2, 1, 0]]  # BGR2RGB
          target[:,:,0] -= mean[0]
          target[:,:,1] -= mean[1]
          target[:,:,2] -= mean[2]
          target *= scale
          target = target.transpose(2, 0, 1).reshape(1, 3, height, width)  # to NCHW
          normAssert(self, blob, target)
  
  
      def test_model(self):
          img_path = self.find_dnn_file("dnn/street.png")
          weights = self.find_dnn_file("dnn/MobileNetSSD_deploy.caffemodel", required=False)
          config = self.find_dnn_file("dnn/MobileNetSSD_deploy.prototxt", required=False)
          if weights is None or config is None:
              raise unittest.SkipTest("Missing DNN test files (dnn/MobileNetSSD_deploy.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
  
          frame = cv.imread(img_path)
          model = cv.dnn_DetectionModel(weights, config)
          model.setInputParams(size=(300, 300), mean=(127.5, 127.5, 127.5), scale=1.0/127.5)
  
          iouDiff = 0.05
          confThreshold = 0.0001
          nmsThreshold = 0
          scoreDiff = 1e-3
  
          classIds, confidences, boxes = model.detect(frame, confThreshold, nmsThreshold)
  
          refClassIds = (7, 15)
          refConfidences = (0.9998, 0.8793)
          refBoxes = ((328, 238, 85, 102), (101, 188, 34, 138))
  
          normAssertDetections(self, refClassIds, refConfidences, refBoxes,
                               classIds, confidences, boxes,confThreshold, scoreDiff, iouDiff)
  
          for box in boxes:
              cv.rectangle(frame, box, (0, 255, 0))
              cv.rectangle(frame, np.array(box), (0, 255, 0))
              cv.rectangle(frame, tuple(box), (0, 255, 0))
              cv.rectangle(frame, list(box), (0, 255, 0))
  
  
      def test_classification_model(self):
          img_path = self.find_dnn_file("dnn/googlenet_0.png")
          weights = self.find_dnn_file("dnn/squeezenet_v1.1.caffemodel", required=False)
          config = self.find_dnn_file("dnn/squeezenet_v1.1.prototxt")
          ref = np.load(self.find_dnn_file("dnn/squeezenet_v1.1_prob.npy"))
          if weights is None or config is None:
              raise unittest.SkipTest("Missing DNN test files (dnn/squeezenet_v1.1.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
  
          frame = cv.imread(img_path)
          model = cv.dnn_ClassificationModel(config, weights)
          model.setInputSize(227, 227)
          model.setInputCrop(True)
  
          out = model.predict(frame)
          normAssert(self, out, ref)
  
  
      def test_textdetection_model(self):
          img_path = self.find_dnn_file("dnn/text_det_test1.png")
          weights = self.find_dnn_file("dnn/onnx/models/DB_TD500_resnet50.onnx", required=False)
          if weights is None:
              raise unittest.SkipTest("Missing DNN test files (onnx/models/DB_TD500_resnet50.onnx). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
  
          frame = cv.imread(img_path)
          scale = 1.0 / 255.0
          size = (736, 736)
          mean = (122.67891434, 116.66876762, 104.00698793)
  
          model = cv.dnn_TextDetectionModel_DB(weights)
          model.setInputParams(scale, size, mean)
          out, _ = model.detect(frame)
  
          self.assertTrue(type(out) == tuple, msg='actual type {}'.format(str(type(out))))
          self.assertTrue(np.array(out).shape == (2, 4, 2))
  
  
      def test_face_detection(self):
          proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt')
          model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=False)
          if proto is None or model is None:
              raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
  
          img = self.get_sample('gpu/lbpcascade/er.png')
          blob = cv.dnn.blobFromImage(img, mean=(104, 177, 123), swapRB=False, crop=False)
  
          ref = [[0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631],
                 [0, 1, 0.9934696,  0.2831718,  0.50738752, 0.345781,   0.5985168],
                 [0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290],
                 [0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477],
                 [0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494],
                 [0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427,  0.5347801]]
  
          print('\n')
          for backend, target in self.dnnBackendsAndTargets:
              printParams(backend, target)
  
              net = cv.dnn.readNet(proto, model)
              net.setPreferableBackend(backend)
              net.setPreferableTarget(target)
              net.setInput(blob)
              out = net.forward().reshape(-1, 7)
  
              scoresDiff = 4e-3 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-5
              iouDiff = 2e-2 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-4
  
              ref = np.array(ref, np.float32)
              refClassIds, testClassIds = ref[:, 1], out[:, 1]
              refScores, testScores = ref[:, 2], out[:, 2]
              refBoxes, testBoxes = ref[:, 3:], out[:, 3:]
  
              normAssertDetections(self, refClassIds, refScores, refBoxes, testClassIds,
                                   testScores, testBoxes, 0.5, scoresDiff, iouDiff)
  
      def test_async(self):
          timeout = 10*1000*10**6  # in nanoseconds (10 sec)
          proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt')
          model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel')
          if proto is None or model is None:
              raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
  
          print('\n')
          for backend, target in self.dnnBackendsAndTargets:
              if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE:
                  continue
  
              printParams(backend, target)
  
              netSync = cv.dnn.readNet(proto, model)
              netSync.setPreferableBackend(backend)
              netSync.setPreferableTarget(target)
  
              netAsync = cv.dnn.readNet(proto, model)
              netAsync.setPreferableBackend(backend)
              netAsync.setPreferableTarget(target)
  
              # Generate inputs
              numInputs = 10
              inputs = []
              for _ in range(numInputs):
                  inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32))
  
              # Run synchronously
              refs = []
              for i in range(numInputs):
                  netSync.setInput(inputs[i])
                  refs.append(netSync.forward())
  
              # Run asynchronously. To make test more robust, process inputs in the reversed order.
              outs = []
              for i in reversed(range(numInputs)):
                  netAsync.setInput(inputs[i])
                  outs.insert(0, netAsync.forwardAsync())
  
              for i in reversed(range(numInputs)):
                  ret, result = outs[i].get(timeoutNs=float(timeout))
                  self.assertTrue(ret)
                  normAssert(self, refs[i], result, 'Index: %d' % i, 1e-10)
  
      def test_nms(self):
          confs = (1, 1)
          rects = ((0, 0, 0.4, 0.4), (0, 0, 0.2, 0.4)) # 0.5 overlap
  
          self.assertTrue(all(cv.dnn.NMSBoxes(rects, confs, 0, 0.6).ravel() == (0, 1)))
  
      def test_custom_layer(self):
          class CropLayer(object):
              def __init__(self, params, blobs):
                  self.xstart = 0
                  self.xend = 0
                  self.ystart = 0
                  self.yend = 0
              # Our layer receives two inputs. We need to crop the first input blob
              # to match a shape of the second one (keeping batch size and number of channels)
              def getMemoryShapes(self, inputs):
                  inputShape, targetShape = inputs[0], inputs[1]
                  batchSize, numChannels = inputShape[0], inputShape[1]
                  height, width = targetShape[2], targetShape[3]
                  self.ystart = (inputShape[2] - targetShape[2]) // 2
                  self.xstart = (inputShape[3] - targetShape[3]) // 2
                  self.yend = self.ystart + height
                  self.xend = self.xstart + width
                  return [[batchSize, numChannels, height, width]]
              def forward(self, inputs):
                  return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]
  
          cv.dnn_registerLayer('CropCaffe', CropLayer)
          proto = '''
          name: "TestCrop"
          input: "input"
          input_shape
          {
              dim: 1
              dim: 2
              dim: 5
              dim: 5
          }
          input: "roi"
          input_shape
          {
              dim: 1
              dim: 2
              dim: 3
              dim: 3
          }
          layer {
            name: "Crop"
            type: "CropCaffe"
            bottom: "input"
            bottom: "roi"
            top: "Crop"
          }'''
  
          net = cv.dnn.readNetFromCaffe(bytearray(proto.encode()))
          for backend, target in self.dnnBackendsAndTargets:
              if backend != cv.dnn.DNN_BACKEND_OPENCV:
                  continue
  
              printParams(backend, target)
  
              net.setPreferableBackend(backend)
              net.setPreferableTarget(target)
              src_shape = [1, 2, 5, 5]
              dst_shape = [1, 2, 3, 3]
              inp = np.arange(0, np.prod(src_shape), dtype=np.float32).reshape(src_shape)
              roi = np.empty(dst_shape, dtype=np.float32)
              net.setInput(inp, "input")
              net.setInput(roi, "roi")
              out = net.forward()
              ref = inp[:, :, 1:4, 1:4]
              normAssert(self, out, ref)
  
          cv.dnn_unregisterLayer('CropCaffe')
  
      # check that dnn module can work with 3D tensor as input for network
      def test_input_3d(self):
          model = self.find_dnn_file('dnn/onnx/models/hidden_lstm.onnx')
          input_file = self.find_dnn_file('dnn/onnx/data/input_hidden_lstm.npy')
          output_file = self.find_dnn_file('dnn/onnx/data/output_hidden_lstm.npy')
          if model is None:
              raise unittest.SkipTest("Missing DNN test files (dnn/onnx/models/hidden_lstm.onnx). "
                                      "Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
          if input_file is None or output_file is None:
              raise unittest.SkipTest("Missing DNN test files (dnn/onnx/data/{input/output}_hidden_lstm.npy). "
                                      "Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
  
          input = np.load(input_file)
          # we have to expand the shape of input tensor because Python bindings cut 3D tensors to 2D
          # it should be fixed in future. see : https://github.com/opencv/opencv/issues/19091
          # please remove `expand_dims` after that
          input = np.expand_dims(input, axis=3)
          gold_output = np.load(output_file)
  
          for backend, target in self.dnnBackendsAndTargets:
              printParams(backend, target)
  
              net = cv.dnn.readNet(model)
  
              net.setPreferableBackend(backend)
              net.setPreferableTarget(target)
  
              net.setInput(input)
              real_output = net.forward()
  
              normAssert(self, real_output, gold_output, "", getDefaultThreshold(target))
  
  if __name__ == '__main__':
      NewOpenCVTests.bootstrap()