softfloat.cpp 165 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html

// This file is based on files from packages softfloat and fdlibm
// issued with the following licenses:

/*============================================================================

This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3c, by John R. Hauser.

Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California.  All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
    this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions, and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

 3. Neither the name of the University nor the names of its contributors may
    be used to endorse or promote products derived from this software without
    specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

=============================================================================*/

// FDLIBM licenses:

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
 * ====================================================
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#include "precomp.hpp"

#include "opencv2/core/softfloat.hpp"

namespace cv
{

/*----------------------------------------------------------------------------
| Software floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
enum {
    tininess_beforeRounding = 0,
    tininess_afterRounding  = 1
};
//fixed to make softfloat code stateless
static const uint_fast8_t globalDetectTininess = tininess_afterRounding;

/*----------------------------------------------------------------------------
| Software floating-point exception flags.
*----------------------------------------------------------------------------*/
enum {
    flag_inexact   =  1,
    flag_underflow =  2,
    flag_overflow  =  4,
    flag_infinite  =  8,
    flag_invalid   = 16
};

// Disabled to make softfloat code stateless
// This function may be changed in the future for better error handling
static inline void raiseFlags( uint_fast8_t /* flags */)
{
    //exceptionFlags |= flags;
}

/*----------------------------------------------------------------------------
| Software floating-point rounding mode.
*----------------------------------------------------------------------------*/
enum {
    round_near_even   = 0, // round to nearest, with ties to even
    round_minMag      = 1, // round to minimum magnitude (toward zero)
    round_min         = 2, // round to minimum (down)
    round_max         = 3, // round to maximum (up)
    round_near_maxMag = 4, // round to nearest, with ties to maximum magnitude (away from zero)
    round_odd         = 5  // round to odd (jamming)
};
/* What is round_odd (from SoftFloat manual):
 * If supported, mode round_odd first rounds a floating-point result to minimum magnitude,
 * the same as round_minMag, and then, if the result is inexact, the least-significant bit
 * of the result is set to 1. This rounding mode is also known as jamming.
 */

//fixed to make softfloat code stateless
static const uint_fast8_t globalRoundingMode = round_near_even;

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/

#define signF32UI( a ) (((uint32_t) (a)>>31) != 0)
#define expF32UI( a ) ((int_fast16_t) ((a)>>23) & 0xFF)
#define fracF32UI( a ) ((a) & 0x007FFFFF)
#define packToF32UI( sign, exp, sig ) (((uint32_t) (sign)<<31) + ((uint32_t) (exp)<<23) + (sig))

#define isNaNF32UI( a ) (((~(a) & 0x7F800000) == 0) && ((a) & 0x007FFFFF))

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/

#define signF64UI( a ) (((uint64_t) (a)>>63) != 0)
#define expF64UI( a ) ((int_fast16_t) ((a)>>52) & 0x7FF)
#define fracF64UI( a ) ((a) & UINT64_C( 0x000FFFFFFFFFFFFF ))
#define packToF64UI( sign, exp, sig ) ((uint64_t) (((uint_fast64_t) (sign)<<63) + ((uint_fast64_t) (exp)<<52) + (sig)))

#define isNaNF64UI( a ) (((~(a) & UINT64_C( 0x7FF0000000000000 )) == 0) && ((a) & UINT64_C( 0x000FFFFFFFFFFFFF )))

/*----------------------------------------------------------------------------
| Types used to pass 32-bit and 64-bit floating-point
| arguments and results to/from functions.  These types must be exactly
| 32 bits and 64 bits in size, respectively.  Where a
| platform has "native" support for IEEE-Standard floating-point formats,
| the types below may, if desired, be defined as aliases for the native types
| (typically 'float' and 'double').
*----------------------------------------------------------------------------*/
typedef softfloat float32_t;
typedef softdouble float64_t;

/*----------------------------------------------------------------------------
| Integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
static float32_t ui32_to_f32( uint32_t );
static float64_t ui32_to_f64( uint32_t );
static float32_t ui64_to_f32( uint64_t );
static float64_t ui64_to_f64( uint64_t );
static float32_t i32_to_f32( int32_t );
static float64_t i32_to_f64( int32_t );
static float32_t i64_to_f32( int64_t );
static float64_t i64_to_f64( int64_t );

/*----------------------------------------------------------------------------
| 32-bit (single-precision) floating-point operations.
*----------------------------------------------------------------------------*/
static int_fast32_t f32_to_i32( float32_t, uint_fast8_t, bool );
static int_fast32_t f32_to_i32_r_minMag( float32_t, bool );
static float64_t f32_to_f64( float32_t );
static float32_t f32_roundToInt( float32_t, uint_fast8_t, bool );
static float32_t f32_add( float32_t, float32_t );
static float32_t f32_sub( float32_t, float32_t );
static float32_t f32_mul( float32_t, float32_t );
static float32_t f32_mulAdd( float32_t, float32_t, float32_t );
static float32_t f32_div( float32_t, float32_t );
static float32_t f32_rem( float32_t, float32_t );
static float32_t f32_sqrt( float32_t );
static bool f32_eq( float32_t, float32_t );
static bool f32_le( float32_t, float32_t );
static bool f32_lt( float32_t, float32_t );

/*----------------------------------------------------------------------------
| 64-bit (double-precision) floating-point operations.
*----------------------------------------------------------------------------*/
static int_fast32_t f64_to_i32( float64_t, uint_fast8_t, bool );
static int_fast64_t f64_to_i64( float64_t, uint_fast8_t, bool );
static int_fast32_t f64_to_i32_r_minMag( float64_t, bool );
static float32_t f64_to_f32( float64_t );
static float64_t f64_roundToInt( float64_t, uint_fast8_t, bool );
static float64_t f64_add( float64_t, float64_t );
static float64_t f64_sub( float64_t, float64_t );
static float64_t f64_mul( float64_t, float64_t );
static float64_t f64_mulAdd( float64_t, float64_t, float64_t );
static float64_t f64_div( float64_t, float64_t );
static float64_t f64_rem( float64_t, float64_t );
static float64_t f64_sqrt( float64_t );
static bool f64_eq( float64_t, float64_t );
static bool f64_le( float64_t, float64_t );
static bool f64_lt( float64_t, float64_t );

/*----------------------------------------------------------------------------
| Ported from OpenCV and fdlibm and added for usability
*----------------------------------------------------------------------------*/

static float32_t f32_powi( float32_t x, int y);
static float64_t f64_powi( float64_t x, int y);
static float64_t f64_sin_kernel(float64_t x);
static float64_t f64_cos_kernel(float64_t x);
static void f64_sincos_reduce(const float64_t& x, float64_t& y, int& n);

static float32_t f32_exp( float32_t x);
static float64_t f64_exp(float64_t x);
static float32_t f32_log(float32_t x);
static float64_t f64_log(float64_t x);
static float32_t f32_cbrt(float32_t x);
static float32_t f32_pow( float32_t x, float32_t y);
static float64_t f64_pow( float64_t x, float64_t y);
static float64_t f64_sin( float64_t x );
static float64_t f64_cos( float64_t x );

/*----------------------------------------------------------------------------
| softfloat and softdouble methods and members
*----------------------------------------------------------------------------*/

softfloat::softfloat( const uint32_t a ) { *this = ui32_to_f32(a); }
softfloat::softfloat( const uint64_t a ) { *this = ui64_to_f32(a); }
softfloat::softfloat( const  int32_t a ) { *this =  i32_to_f32(a); }
softfloat::softfloat( const  int64_t a ) { *this =  i64_to_f32(a); }

softfloat::operator softdouble() const { return f32_to_f64(*this); }

softfloat softfloat::operator + (const softfloat& a) const { return f32_add(*this, a); }
softfloat softfloat::operator - (const softfloat& a) const { return f32_sub(*this, a); }
softfloat softfloat::operator * (const softfloat& a) const { return f32_mul(*this, a); }
softfloat softfloat::operator / (const softfloat& a) const { return f32_div(*this, a); }
softfloat softfloat::operator % (const softfloat& a) const { return f32_rem(*this, a); }

bool softfloat::operator == ( const softfloat& a ) const { return  f32_eq(*this, a); }
bool softfloat::operator != ( const softfloat& a ) const { return !f32_eq(*this, a); }
bool softfloat::operator >  ( const softfloat& a ) const { return  f32_lt(a, *this); }
bool softfloat::operator >= ( const softfloat& a ) const { return  f32_le(a, *this); }
bool softfloat::operator <  ( const softfloat& a ) const { return  f32_lt(*this, a); }
bool softfloat::operator <= ( const softfloat& a ) const { return  f32_le(*this, a); }

softdouble::softdouble( const uint32_t a ) { *this = ui32_to_f64(a); }
softdouble::softdouble( const uint64_t a ) { *this = ui64_to_f64(a); }
softdouble::softdouble( const  int32_t a ) { *this =  i32_to_f64(a); }
softdouble::softdouble( const  int64_t a ) { *this =  i64_to_f64(a); }

}

int cvTrunc(const cv::softfloat& a) { return cv::f32_to_i32_r_minMag(a, false); }
int cvRound(const cv::softfloat& a) { return cv::f32_to_i32(a, cv::round_near_even, false); }
int cvFloor(const cv::softfloat& a) { return cv::f32_to_i32(a, cv::round_min, false); }
int cvCeil (const cv::softfloat& a) { return cv::f32_to_i32(a, cv::round_max, false); }

int cvTrunc(const cv::softdouble& a) { return cv::f64_to_i32_r_minMag(a, false); }
int cvRound(const cv::softdouble& a) { return cv::f64_to_i32(a, cv::round_near_even, false); }
int cvFloor(const cv::softdouble& a) { return cv::f64_to_i32(a, cv::round_min, false); }
int cvCeil (const cv::softdouble& a) { return cv::f64_to_i32(a, cv::round_max, false); }

int64_t cvRound64(const cv::softdouble& a) { return cv::f64_to_i64(a, cv::round_near_even, false); }

namespace cv
{
softdouble::operator softfloat() const { return f64_to_f32(*this); }

softdouble softdouble::operator + (const softdouble& a) const { return f64_add(*this, a); }
softdouble softdouble::operator - (const softdouble& a) const { return f64_sub(*this, a); }
softdouble softdouble::operator * (const softdouble& a) const { return f64_mul(*this, a); }
softdouble softdouble::operator / (const softdouble& a) const { return f64_div(*this, a); }
softdouble softdouble::operator % (const softdouble& a) const { return f64_rem(*this, a); }

bool softdouble::operator == (const softdouble& a) const { return  f64_eq(*this, a); }
bool softdouble::operator != (const softdouble& a) const { return !f64_eq(*this, a); }
bool softdouble::operator >  (const softdouble& a) const { return  f64_lt(a, *this); }
bool softdouble::operator >= (const softdouble& a) const { return  f64_le(a, *this); }
bool softdouble::operator <  (const softdouble& a) const { return  f64_lt(*this, a); }
bool softdouble::operator <= (const softdouble& a) const { return  f64_le(*this, a); }

/*----------------------------------------------------------------------------
| Overloads for math functions
*----------------------------------------------------------------------------*/

softfloat  mulAdd( const softfloat&  a, const softfloat&  b, const softfloat & c) { return f32_mulAdd(a, b, c); }
softdouble mulAdd( const softdouble& a, const softdouble& b, const softdouble& c) { return f64_mulAdd(a, b, c); }

softfloat  sqrt( const softfloat&  a ) { return f32_sqrt(a); }
softdouble sqrt( const softdouble& a ) { return f64_sqrt(a); }

softfloat  exp( const softfloat&  a) { return f32_exp(a); }
softdouble exp( const softdouble& a) { return f64_exp(a); }

softfloat  log( const softfloat&  a ) { return f32_log(a); }
softdouble log( const softdouble& a ) { return f64_log(a); }

softfloat  pow( const softfloat&  a, const softfloat&  b) { return f32_pow(a, b); }
softdouble pow( const softdouble& a, const softdouble& b) { return f64_pow(a, b); }

softfloat cbrt(const softfloat& a) { return f32_cbrt(a); }

softdouble sin(const softdouble& a) { return f64_sin(a); }
softdouble cos(const softdouble& a) { return f64_cos(a); }

/*----------------------------------------------------------------------------
| The values to return on conversions to 32-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui32_fromPosOverflow 0xFFFFFFFF
#define ui32_fromNegOverflow 0
#define ui32_fromNaN         0xFFFFFFFF
#define i32_fromPosOverflow  0x7FFFFFFF
#define i32_fromNegOverflow  (-0x7FFFFFFF - 1)
#define i32_fromNaN          0x7FFFFFFF

/*----------------------------------------------------------------------------
| The values to return on conversions to 64-bit integer formats that raise an
| invalid exception.
*----------------------------------------------------------------------------*/
#define ui64_fromPosOverflow UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define ui64_fromNegOverflow 0
#define ui64_fromNaN         UINT64_C( 0xFFFFFFFFFFFFFFFF )
#define i64_fromPosOverflow  UINT64_C( 0x7FFFFFFFFFFFFFFF )
//fixed unsigned unary minus: -x == ~x + 1
//#define i64_fromNegOverflow (-UINT64_C( 0x7FFFFFFFFFFFFFFF ) - 1)
#define i64_fromNegOverflow  (~UINT64_C( 0x7FFFFFFFFFFFFFFF ) + 1 - 1)
#define i64_fromNaN          UINT64_C( 0x7FFFFFFFFFFFFFFF )

/*----------------------------------------------------------------------------
| "Common NaN" structure, used to transfer NaN representations from one format
| to another.
*----------------------------------------------------------------------------*/
struct commonNaN {
    bool sign;
#ifndef WORDS_BIGENDIAN
    uint64_t v0, v64;
#else
    uint64_t v64, v0;
#endif
};

/*----------------------------------------------------------------------------
| The bit pattern for a default generated 32-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF32UI 0xFFC00000

/*----------------------------------------------------------------------------
| Returns true when 32-bit unsigned integer `uiA' has the bit pattern of a
| 32-bit floating-point signaling NaN.
| Note:  This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF32UI( uiA ) ((((uiA) & 0x7FC00000) == 0x7F800000) && ((uiA) & 0x003FFFFF))

/*----------------------------------------------------------------------------
| Assuming `uiA' has the bit pattern of a 32-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'.  If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr );

/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by `aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
static uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr );

/*----------------------------------------------------------------------------
| Interpreting `uiA' and `uiB' as the bit patterns of two 32-bit floating-
| point values, at least one of which is a NaN, returns the bit pattern of
| the combined NaN result.  If either `uiA' or `uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static uint_fast32_t softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB );

/*----------------------------------------------------------------------------
| The bit pattern for a default generated 64-bit floating-point NaN.
*----------------------------------------------------------------------------*/
#define defaultNaNF64UI UINT64_C( 0xFFF8000000000000 )

/*----------------------------------------------------------------------------
| Returns true when 64-bit unsigned integer `uiA' has the bit pattern of a
| 64-bit floating-point signaling NaN.
| Note:  This macro evaluates its argument more than once.
*----------------------------------------------------------------------------*/
#define softfloat_isSigNaNF64UI( uiA ) \
    ((((uiA) & UINT64_C( 0x7FF8000000000000 )) == UINT64_C( 0x7FF0000000000000 )) && \
      ((uiA) & UINT64_C( 0x0007FFFFFFFFFFFF )))

/*----------------------------------------------------------------------------
| Assuming `uiA' has the bit pattern of a 64-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'.  If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr );

/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by `aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
static uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr );

/*----------------------------------------------------------------------------
| Interpreting `uiA' and `uiB' as the bit patterns of two 64-bit floating-
| point values, at least one of which is a NaN, returns the bit pattern of
| the combined NaN result.  If either `uiA' or `uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static uint_fast64_t softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB );

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/

#ifndef WORDS_BIGENDIAN
struct uint128 { uint64_t v0, v64; };
struct uint64_extra { uint64_t extra, v; };
struct uint128_extra { uint64_t extra; struct uint128 v; };
#else
struct uint128 { uint64_t v64, v0; };
struct uint64_extra { uint64_t v, extra; };
struct uint128_extra { struct uint128 v; uint64_t extra; };
#endif

/*----------------------------------------------------------------------------
| These macros are used to isolate the differences in word order between big-
| endian and little-endian platforms.
*----------------------------------------------------------------------------*/
#ifndef WORDS_BIGENDIAN
#define wordIncr 1
#define indexWord( total, n ) (n)
#define indexWordHi( total ) ((total) - 1)
#define indexWordLo( total ) 0
#define indexMultiword( total, m, n ) (n)
#define indexMultiwordHi( total, n ) ((total) - (n))
#define indexMultiwordLo( total, n ) 0
#define indexMultiwordHiBut( total, n ) (n)
#define indexMultiwordLoBut( total, n ) 0
#define INIT_UINTM4( v3, v2, v1, v0 ) { v0, v1, v2, v3 }
#else
#define wordIncr -1
#define indexWord( total, n ) ((total) - 1 - (n))
#define indexWordHi( total ) 0
#define indexWordLo( total ) ((total) - 1)
#define indexMultiword( total, m, n ) ((total) - 1 - (m))
#define indexMultiwordHi( total, n ) 0
#define indexMultiwordLo( total, n ) ((total) - (n))
#define indexMultiwordHiBut( total, n ) 0
#define indexMultiwordLoBut( total, n ) (n)
#define INIT_UINTM4( v3, v2, v1, v0 ) { v3, v2, v1, v0 }
#endif

enum {
    softfloat_mulAdd_subC    = 1,
    softfloat_mulAdd_subProd = 2
};

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
static int_fast32_t softfloat_roundToI32( bool, uint_fast64_t, uint_fast8_t, bool );

struct exp16_sig32 { int_fast16_t exp; uint_fast32_t sig; };
static struct exp16_sig32 softfloat_normSubnormalF32Sig( uint_fast32_t );

static float32_t softfloat_roundPackToF32( bool, int_fast16_t, uint_fast32_t );
static float32_t softfloat_normRoundPackToF32( bool, int_fast16_t, uint_fast32_t );

static float32_t softfloat_addMagsF32( uint_fast32_t, uint_fast32_t );
static float32_t softfloat_subMagsF32( uint_fast32_t, uint_fast32_t );
static float32_t softfloat_mulAddF32(uint_fast32_t, uint_fast32_t, uint_fast32_t, uint_fast8_t );

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
static int_fast64_t softfloat_roundToI64( bool, uint_fast64_t, uint_fast64_t, uint_fast8_t, bool);

struct exp16_sig64 { int_fast16_t exp; uint_fast64_t sig; };
static struct exp16_sig64 softfloat_normSubnormalF64Sig( uint_fast64_t );

static float64_t softfloat_roundPackToF64( bool, int_fast16_t, uint_fast64_t );
static float64_t softfloat_normRoundPackToF64( bool, int_fast16_t, uint_fast64_t );

static float64_t softfloat_addMagsF64( uint_fast64_t, uint_fast64_t, bool );
static float64_t softfloat_subMagsF64( uint_fast64_t, uint_fast64_t, bool );
static float64_t softfloat_mulAddF64( uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast8_t );

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------
| Shifts 'a' right by the number of bits given in 'dist', which must be in
| the range 1 to 63.  If any nonzero bits are shifted off, they are "jammed"
| into the least-significant bit of the shifted value by setting the least-
| significant bit to 1.  This shifted-and-jammed value is returned.
*----------------------------------------------------------------------------*/

static inline uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t dist )
{ return a>>dist | ((a & (((uint_fast64_t) 1<<dist) - 1)) != 0); }

/*----------------------------------------------------------------------------
| Shifts 'a' right by the number of bits given in 'dist', which must not
| be zero.  If any nonzero bits are shifted off, they are "jammed" into the
| least-significant bit of the shifted value by setting the least-significant
| bit to 1.  This shifted-and-jammed value is returned.
|   The value of 'dist' can be arbitrarily large.  In particular, if 'dist' is
| greater than 32, the result will be either 0 or 1, depending on whether 'a'
| is zero or nonzero.
*----------------------------------------------------------------------------*/

static inline uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t dist )
{
    //fixed unsigned unary minus: -x == ~x + 1
    return (dist < 31) ? a>>dist | ((uint32_t) (a<<((~dist + 1) & 31)) != 0) : (a != 0);
}

/*----------------------------------------------------------------------------
| Shifts 'a' right by the number of bits given in 'dist', which must not
| be zero.  If any nonzero bits are shifted off, they are "jammed" into the
| least-significant bit of the shifted value by setting the least-significant
| bit to 1.  This shifted-and-jammed value is returned.
|   The value of 'dist' can be arbitrarily large.  In particular, if 'dist' is
| greater than 64, the result will be either 0 or 1, depending on whether 'a'
| is zero or nonzero.
*----------------------------------------------------------------------------*/
static inline uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t dist )
{
    //fixed unsigned unary minus: -x == ~x + 1
    return (dist < 63) ? a>>dist | ((uint64_t) (a<<((~dist + 1) & 63)) != 0) : (a != 0);
}

/*----------------------------------------------------------------------------
| A constant table that translates an 8-bit unsigned integer (the array index)
| into the number of leading 0 bits before the most-significant 1 of that
| integer.  For integer zero (index 0), the corresponding table element is 8.
*----------------------------------------------------------------------------*/
static const uint_least8_t softfloat_countLeadingZeros8[256] = {
    8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| 'a'.  If 'a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
static inline uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{
    uint_fast8_t count = 0;
    if ( a < 0x10000 ) {
        count = 16;
        a <<= 16;
    }
    if ( a < 0x1000000 ) {
        count += 8;
        a <<= 8;
    }
    count += softfloat_countLeadingZeros8[a>>24];
    return count;
}

/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| 'a'.  If 'a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
static uint_fast8_t softfloat_countLeadingZeros64( uint64_t a );

/*----------------------------------------------------------------------------
| Returns an approximation to the reciprocal of the number represented by 'a',
| where 'a' is interpreted as an unsigned fixed-point number with one integer
| bit and 31 fraction bits.  The 'a' input must be "normalized", meaning that
| its most-significant bit (bit 31) must be 1.  Thus, if A is the value of
| the fixed-point interpretation of 'a', then 1 <= A < 2.  The returned value
| is interpreted as a pure unsigned fraction, having no integer bits and 32
| fraction bits.  The approximation returned is never greater than the true
| reciprocal 1/A, and it differs from the true reciprocal by at most 2.006 ulp
| (units in the last place).
*----------------------------------------------------------------------------*/
#define softfloat_approxRecip32_1( a ) ((uint32_t) (UINT64_C( 0x7FFFFFFFFFFFFFFF ) / (uint32_t) (a)))

/*----------------------------------------------------------------------------
| Returns an approximation to the reciprocal of the square root of the number
| represented by 'a', where 'a' is interpreted as an unsigned fixed-point
| number either with one integer bit and 31 fraction bits or with two integer
| bits and 30 fraction bits.  The format of 'a' is determined by 'oddExpA',
| which must be either 0 or 1.  If 'oddExpA' is 1, 'a' is interpreted as
| having one integer bit, and if 'oddExpA' is 0, 'a' is interpreted as having
| two integer bits.  The 'a' input must be "normalized", meaning that its
| most-significant bit (bit 31) must be 1.  Thus, if A is the value of the
| fixed-point interpretation of 'a', it follows that 1 <= A < 2 when 'oddExpA'
| is 1, and 2 <= A < 4 when 'oddExpA' is 0.
|   The returned value is interpreted as a pure unsigned fraction, having
| no integer bits and 32 fraction bits.  The approximation returned is never
| greater than the true reciprocal 1/sqrt(A), and it differs from the true
| reciprocal by at most 2.06 ulp (units in the last place).  The approximation
| returned is also always within the range 0.5 to 1; thus, the most-
| significant bit of the result is always set.
*----------------------------------------------------------------------------*/
static uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );

static const uint16_t softfloat_approxRecipSqrt_1k0s[16] = {
    0xB4C9, 0xFFAB, 0xAA7D, 0xF11C, 0xA1C5, 0xE4C7, 0x9A43, 0xDA29,
    0x93B5, 0xD0E5, 0x8DED, 0xC8B7, 0x88C6, 0xC16D, 0x8424, 0xBAE1
};
static const uint16_t softfloat_approxRecipSqrt_1k1s[16] = {
    0xA5A5, 0xEA42, 0x8C21, 0xC62D, 0x788F, 0xAA7F, 0x6928, 0x94B6,
    0x5CC7, 0x8335, 0x52A6, 0x74E2, 0x4A3E, 0x68FE, 0x432B, 0x5EFD
};

/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating 'a64' and 'a0' left by the
| number of bits given in 'dist', which must be in the range 1 to 63.
*----------------------------------------------------------------------------*/
static inline struct uint128 softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
    struct uint128 z;
    z.v64 = a64<<dist | a0>>(-dist & 63);
    z.v0 = a0<<dist;
    return z;
}

/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating 'a64' and 'a0' right by the
| number of bits given in 'dist', which must be in the range 1 to 63.  If any
| nonzero bits are shifted off, they are "jammed" into the least-significant
| bit of the shifted value by setting the least-significant bit to 1.  This
| shifted-and-jammed value is returned.
*----------------------------------------------------------------------------*/
static inline struct uint128 softfloat_shortShiftRightJam128(uint64_t a64, uint64_t a0, uint_fast8_t dist )
{
    uint_fast8_t negDist = -dist;
    struct uint128 z;
    z.v64 = a64>>dist;
    z.v0 =
        a64<<(negDist & 63) | a0>>dist
            | ((uint64_t) (a0<<(negDist & 63)) != 0);
    return z;
}

/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating 'a64' and 'a0' right by the
| number of bits given in 'dist', which must not be zero.  If any nonzero bits
| are shifted off, they are "jammed" into the least-significant bit of the
| shifted value by setting the least-significant bit to 1.  This shifted-and-
| jammed value is returned.
|   The value of 'dist' can be arbitrarily large.  In particular, if 'dist' is
| greater than 128, the result will be either 0 or 1, depending on whether the
| original 128 bits are all zeros.
*----------------------------------------------------------------------------*/
static struct uint128 softfloat_shiftRightJam128( uint64_t a64, uint64_t a0, uint_fast32_t dist );

/*----------------------------------------------------------------------------
| Returns the sum of the 128-bit integer formed by concatenating 'a64' and
| 'a0' and the 128-bit integer formed by concatenating 'b64' and 'b0'.  The
| addition is modulo 2^128, so any carry out is lost.
*----------------------------------------------------------------------------*/
static inline struct uint128 softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
    struct uint128 z;
    z.v0 = a0 + b0;
    z.v64 = a64 + b64 + (z.v0 < a0);
    return z;
}

/*----------------------------------------------------------------------------
| Returns the difference of the 128-bit integer formed by concatenating 'a64'
| and 'a0' and the 128-bit integer formed by concatenating 'b64' and 'b0'.
| The subtraction is modulo 2^128, so any borrow out (carry out) is lost.
*----------------------------------------------------------------------------*/
static inline struct uint128 softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
    struct uint128 z;
    z.v0 = a0 - b0;
    z.v64 = a64 - b64;
    z.v64 -= (a0 < b0);
    return z;
}

/*----------------------------------------------------------------------------
| Returns the 128-bit product of 'a' and 'b'.
*----------------------------------------------------------------------------*/
static struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );

/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
*----------------------------------------------------------------------------*/

static float32_t f32_add( float32_t a, float32_t b )
{
    uint_fast32_t uiA = a.v;
    uint_fast32_t uiB = b.v;

    if ( signF32UI( uiA ^ uiB ) ) {
        return softfloat_subMagsF32( uiA, uiB );
    } else {
        return softfloat_addMagsF32( uiA, uiB );
    }
}

static float32_t f32_div( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast32_t sigA;
    uint_fast32_t uiB;
    bool signB;
    int_fast16_t expB;
    uint_fast32_t sigB;
    bool signZ;
    struct exp16_sig32 normExpSig;
    int_fast16_t expZ;
    uint_fast64_t sig64A;
    uint_fast32_t sigZ;
    uint_fast32_t uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF32UI( uiA );
    expA  = expF32UI( uiA );
    sigA  = fracF32UI( uiA );
    uiB = b.v;
    signB = signF32UI( uiB );
    expB  = expF32UI( uiB );
    sigB  = fracF32UI( uiB );
    signZ = signA ^ signB;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0xFF ) {
        if ( sigA ) goto propagateNaN;
        if ( expB == 0xFF ) {
            if ( sigB ) goto propagateNaN;
            goto invalid;
        }
        goto infinity;
    }
    if ( expB == 0xFF ) {
        if ( sigB ) goto propagateNaN;
        goto zero;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expB ) {
        if ( ! sigB ) {
            if ( ! (expA | sigA) ) goto invalid;
            raiseFlags( flag_infinite );
            goto infinity;
        }
        normExpSig = softfloat_normSubnormalF32Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    if ( ! expA ) {
        if ( ! sigA ) goto zero;
        normExpSig = softfloat_normSubnormalF32Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expZ = expA - expB + 0x7E;
    sigA |= 0x00800000;
    sigB |= 0x00800000;
    if ( sigA < sigB ) {
        --expZ;
        sig64A = (uint_fast64_t) sigA<<31;
    } else {
        sig64A = (uint_fast64_t) sigA<<30;
    }
    sigZ = (uint_fast32_t)(sig64A / sigB); // fixed warning on type cast
    if ( ! (sigZ & 0x3F) ) sigZ |= ((uint_fast64_t) sigB * sigZ != sig64A);
    return softfloat_roundPackToF32( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF32UI( uiA, uiB );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 invalid:
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF32UI;
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 infinity:
    uiZ = packToF32UI( signZ, 0xFF, 0 );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 zero:
    uiZ = packToF32UI( signZ, 0, 0 );
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static bool f32_eq( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    uint_fast32_t uiB;

    uiA = a.v;
    uiB = b.v;
    if ( isNaNF32UI( uiA ) || isNaNF32UI( uiB ) )
    {
        if (softfloat_isSigNaNF32UI( uiA ) || softfloat_isSigNaNF32UI( uiB ) )
            raiseFlags( flag_invalid );
        return false;
    }
    return (uiA == uiB) || ! (uint32_t) ((uiA | uiB)<<1);
}

static bool f32_le( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    uint_fast32_t uiB;
    bool signA, signB;

    uiA = a.v;
    uiB = b.v;
    if ( isNaNF32UI( uiA ) || isNaNF32UI( uiB ) )
    {
        raiseFlags( flag_invalid );
        return false;
    }
    signA = signF32UI( uiA );
    signB = signF32UI( uiB );
    return (signA != signB) ? signA || ! (uint32_t) ((uiA | uiB)<<1)
                            : (uiA == uiB) || (signA ^ (uiA < uiB));
}

static bool f32_lt( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    uint_fast32_t uiB;
    bool signA, signB;

    uiA = a.v; uiB = b.v;
    if ( isNaNF32UI( uiA ) || isNaNF32UI( uiB ) )
    {
        raiseFlags( flag_invalid );
        return false;
    }
    signA = signF32UI( uiA );
    signB = signF32UI( uiB );
    return (signA != signB) ? signA && ((uint32_t) ((uiA | uiB)<<1) != 0)
                            : (uiA != uiB) && (signA ^ (uiA < uiB));
}

static float32_t f32_mulAdd( float32_t a, float32_t b, float32_t c )
{
    uint_fast32_t uiA;
    uint_fast32_t uiB;
    uint_fast32_t uiC;

    uiA = a.v;
    uiB = b.v;
    uiC = c.v;
    return softfloat_mulAddF32( uiA, uiB, uiC, 0 );
}

static float32_t f32_mul( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast32_t sigA;
    uint_fast32_t uiB;
    bool signB;
    int_fast16_t expB;
    uint_fast32_t sigB;
    bool signZ;
    uint_fast32_t magBits;
    struct exp16_sig32 normExpSig;
    int_fast16_t expZ;
    uint_fast32_t sigZ, uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF32UI( uiA );
    expA  = expF32UI( uiA );
    sigA  = fracF32UI( uiA );
    uiB = b.v;
    signB = signF32UI( uiB );
    expB  = expF32UI( uiB );
    sigB  = fracF32UI( uiB );
    signZ = signA ^ signB;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0xFF ) {
        if ( sigA || ((expB == 0xFF) && sigB) ) goto propagateNaN;
        magBits = expB | sigB;
        goto infArg;
    }
    if ( expB == 0xFF ) {
        if ( sigB ) goto propagateNaN;
        magBits = expA | sigA;
        goto infArg;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expA ) {
        if ( ! sigA ) goto zero;
        normExpSig = softfloat_normSubnormalF32Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    if ( ! expB ) {
        if ( ! sigB ) goto zero;
        normExpSig = softfloat_normSubnormalF32Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expZ = expA + expB - 0x7F;
    sigA = (sigA | 0x00800000)<<7;
    sigB = (sigB | 0x00800000)<<8;
    sigZ = (uint_fast32_t)softfloat_shortShiftRightJam64( (uint_fast64_t) sigA * sigB, 32 ); //fixed warning on type cast
    if ( sigZ < 0x40000000 ) {
        --expZ;
        sigZ <<= 1;
    }
    return softfloat_roundPackToF32( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF32UI( uiA, uiB );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 infArg:
    if ( ! magBits ) {
        raiseFlags( flag_invalid );
        uiZ = defaultNaNF32UI;
    } else {
        uiZ = packToF32UI( signZ, 0xFF, 0 );
    }
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 zero:
    uiZ = packToF32UI( signZ, 0, 0 );
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float32_t f32_rem( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast32_t sigA;
    uint_fast32_t uiB;
    int_fast16_t expB;
    uint_fast32_t sigB;
    struct exp16_sig32 normExpSig;
    uint32_t rem;
    int_fast16_t expDiff;
    uint32_t q, recip32, altRem, meanRem;
    bool signRem;
    uint_fast32_t uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF32UI( uiA );
    expA  = expF32UI( uiA );
    sigA  = fracF32UI( uiA );
    uiB = b.v;
    expB = expF32UI( uiB );
    sigB = fracF32UI( uiB );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0xFF ) {
        if ( sigA || ((expB == 0xFF) && sigB) ) goto propagateNaN;
        goto invalid;
    }
    if ( expB == 0xFF ) {
        if ( sigB ) goto propagateNaN;
        return a;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expB ) {
        if ( ! sigB ) goto invalid;
        normExpSig = softfloat_normSubnormalF32Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    if ( ! expA ) {
        if ( ! sigA ) return a;
        normExpSig = softfloat_normSubnormalF32Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    rem = sigA | 0x00800000;
    sigB |= 0x00800000;
    expDiff = expA - expB;
    if ( expDiff < 1 ) {
        if ( expDiff < -1 ) return a;
        sigB <<= 6;
        if ( expDiff ) {
            rem <<= 5;
            q = 0;
        } else {
            rem <<= 6;
            q = (sigB <= rem);
            if ( q ) rem -= sigB;
        }
    } else {
        recip32 = softfloat_approxRecip32_1( sigB<<8 );
        /*--------------------------------------------------------------------
        | Changing the shift of `rem' here requires also changing the initial
        | subtraction from `expDiff'.
        *--------------------------------------------------------------------*/
        rem <<= 7;
        expDiff -= 31;
        /*--------------------------------------------------------------------
        | The scale of `sigB' affects how many bits are obtained during each
        | cycle of the loop.  Currently this is 29 bits per loop iteration,
        | which is believed to be the maximum possible.
        *--------------------------------------------------------------------*/
        sigB <<= 6;
        for (;;) {
            q = (rem * (uint_fast64_t) recip32)>>32;
            if ( expDiff < 0 ) break;
            //fixed unsigned unary minus: -x == ~x + 1
            rem = ~(q * (uint32_t) sigB) + 1;
            expDiff -= 29;
        }
        /*--------------------------------------------------------------------
        | (`expDiff' cannot be less than -30 here.)
        *--------------------------------------------------------------------*/
        q >>= ~expDiff & 31;
        rem = (rem<<(expDiff + 30)) - q * (uint32_t) sigB;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    do {
        altRem = rem;
        ++q;
        rem -= sigB;
    } while ( ! (rem & 0x80000000) );
    meanRem = rem + altRem;
    if ( (meanRem & 0x80000000) || (! meanRem && (q & 1)) ) rem = altRem;
    signRem = signA;
    if ( 0x80000000 <= rem ) {
        signRem = ! signRem;
        //fixed unsigned unary minus: -x == ~x + 1
        rem = ~rem + 1;
    }
    return softfloat_normRoundPackToF32( signRem, expB, rem );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF32UI( uiA, uiB );
    goto uiZ;
 invalid:
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF32UI;
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float32_t f32_roundToInt( float32_t a, uint_fast8_t roundingMode, bool exact )
{
    uint_fast32_t uiA;
    int_fast16_t exp;
    uint_fast32_t uiZ, lastBitMask, roundBitsMask;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    exp = expF32UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( exp <= 0x7E ) {
        if ( ! (uint32_t) (uiA<<1) ) return a;
        if ( exact ) raiseFlags(flag_inexact);
        uiZ = uiA & packToF32UI( 1, 0, 0 );
        switch ( roundingMode ) {
         case round_near_even:
            if ( ! fracF32UI( uiA ) ) break;
            /* fallthrough */
         case round_near_maxMag:
            if ( exp == 0x7E ) uiZ |= packToF32UI( 0, 0x7F, 0 );
            break;
         case round_min:
            if ( uiZ ) uiZ = packToF32UI( 1, 0x7F, 0 );
            break;
         case round_max:
            if ( ! uiZ ) uiZ = packToF32UI( 0, 0x7F, 0 );
            break;
        }
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( 0x96 <= exp ) {
        if ( (exp == 0xFF) && fracF32UI( uiA ) ) {
            uiZ = softfloat_propagateNaNF32UI( uiA, 0 );
            goto uiZ;
        }
        return a;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiZ = uiA;
    lastBitMask = (uint_fast32_t) 1<<(0x96 - exp);
    roundBitsMask = lastBitMask - 1;
    if ( roundingMode == round_near_maxMag ) {
        uiZ += lastBitMask>>1;
    } else if ( roundingMode == round_near_even ) {
        uiZ += lastBitMask>>1;
        if ( ! (uiZ & roundBitsMask) ) uiZ &= ~lastBitMask;
    } else if (
        roundingMode
            == (signF32UI( uiZ ) ? round_min : round_max)
    ) {
        uiZ += roundBitsMask;
    }
    uiZ &= ~roundBitsMask;
    if ( exact && (uiZ != uiA) ) {
        raiseFlags(flag_inexact);
    }
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float32_t f32_sqrt( float32_t a )
{
    uint_fast32_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast32_t sigA, uiZ;
    struct exp16_sig32 normExpSig;
    int_fast16_t expZ;
    uint_fast32_t sigZ, shiftedSigZ;
    uint32_t negRem;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF32UI( uiA );
    expA  = expF32UI( uiA );
    sigA  = fracF32UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0xFF ) {
        if ( sigA ) {
            uiZ = softfloat_propagateNaNF32UI( uiA, 0 );
            goto uiZ;
        }
        if ( ! signA ) return a;
        goto invalid;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( signA ) {
        if ( ! (expA | sigA) ) return a;
        goto invalid;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expA ) {
        if ( ! sigA ) return a;
        normExpSig = softfloat_normSubnormalF32Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expZ = ((expA - 0x7F)>>1) + 0x7E;
    expA &= 1;
    sigA = (sigA | 0x00800000)<<8;
    sigZ =
        ((uint_fast64_t) sigA * softfloat_approxRecipSqrt32_1( expA, sigA ))
            >>32;
    if ( expA ) sigZ >>= 1;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sigZ += 2;
    if ( (sigZ & 0x3F) < 2 ) {
        shiftedSigZ = sigZ>>2;
        negRem = shiftedSigZ * shiftedSigZ;
        sigZ &= ~3;
        if ( negRem & 0x80000000 ) {
            sigZ |= 1;
        } else {
            if ( negRem ) --sigZ;
        }
    }
    return softfloat_roundPackToF32( 0, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 invalid:
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF32UI;
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float32_t f32_sub( float32_t a, float32_t b )
{
    uint_fast32_t uiA;
    uint_fast32_t uiB;

    uiA = a.v;
    uiB = b.v;
    if ( signF32UI( uiA ^ uiB ) ) {
        return softfloat_addMagsF32( uiA, uiB );
    } else {
        return softfloat_subMagsF32( uiA, uiB );
    }
}

static float64_t f32_to_f64( float32_t a )
{
    uint_fast32_t uiA;
    bool sign;
    int_fast16_t exp;
    uint_fast32_t frac;
    struct commonNaN commonNaN;
    uint_fast64_t uiZ;
    struct exp16_sig32 normExpSig;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    sign = signF32UI( uiA );
    exp  = expF32UI( uiA );
    frac = fracF32UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( exp == 0xFF ) {
        if ( frac ) {
            softfloat_f32UIToCommonNaN( uiA, &commonNaN );
            uiZ = softfloat_commonNaNToF64UI( &commonNaN );
        } else {
            uiZ = packToF64UI( sign, 0x7FF, 0 );
        }
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! exp ) {
        if ( ! frac ) {
            uiZ = packToF64UI( sign, 0, 0 );
            goto uiZ;
        }
        normExpSig = softfloat_normSubnormalF32Sig( frac );
        exp = normExpSig.exp - 1;
        frac = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiZ = packToF64UI( sign, exp + 0x380, (uint_fast64_t) frac<<29 );
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static int_fast32_t f32_to_i32( float32_t a, uint_fast8_t roundingMode, bool exact )
{
    uint_fast32_t uiA;
    bool sign;
    int_fast16_t exp;
    uint_fast32_t sig;
    uint_fast64_t sig64;
    int_fast16_t shiftDist;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    sign = signF32UI( uiA );
    exp  = expF32UI( uiA );
    sig  = fracF32UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
#if (i32_fromNaN != i32_fromPosOverflow) || (i32_fromNaN != i32_fromNegOverflow)
    if ( (exp == 0xFF) && sig ) {
#if (i32_fromNaN == i32_fromPosOverflow)
        sign = 0;
#elif (i32_fromNaN == i32_fromNegOverflow)
        sign = 1;
#else
        raiseFlags( flag_invalid );
        return i32_fromNaN;
#endif
    }
#endif
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( exp ) sig |= 0x00800000;
    sig64 = (uint_fast64_t) sig<<32;
    shiftDist = 0xAA - exp;
    if ( 0 < shiftDist ) sig64 = softfloat_shiftRightJam64( sig64, shiftDist );
    return softfloat_roundToI32( sign, sig64, roundingMode, exact );
}

static int_fast32_t f32_to_i32_r_minMag( float32_t a, bool exact )
{
    uint_fast32_t uiA;
    int_fast16_t exp;
    uint_fast32_t sig;
    int_fast16_t shiftDist;
    bool sign;
    int_fast32_t absZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    exp = expF32UI( uiA );
    sig = fracF32UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    shiftDist = 0x9E - exp;
    if ( 32 <= shiftDist ) {
        if ( exact && (exp | sig) ) {
            raiseFlags(flag_inexact);
        }
        return 0;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sign = signF32UI( uiA );
    if ( shiftDist <= 0 ) {
        if ( uiA == packToF32UI( 1, 0x9E, 0 ) ) return -0x7FFFFFFF - 1;
        raiseFlags( flag_invalid );
        return
            (exp == 0xFF) && sig ? i32_fromNaN
                : sign ? i32_fromNegOverflow : i32_fromPosOverflow;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sig = (sig | 0x00800000)<<8;
    absZ = sig>>shiftDist;
    if ( exact && ((uint_fast32_t) absZ<<shiftDist != sig) ) {
        raiseFlags(flag_inexact);
    }
    return sign ? -absZ : absZ;
}

static float64_t f64_add( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    bool signA;
    uint_fast64_t uiB;
    bool signB;

    uiA = a.v;
    signA = signF64UI( uiA );
    uiB = b.v;
    signB = signF64UI( uiB );
    if ( signA == signB ) {
        return softfloat_addMagsF64( uiA, uiB, signA );
    } else {
        return softfloat_subMagsF64( uiA, uiB, signA );
    }
}

static float64_t f64_div( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast64_t sigA;
    uint_fast64_t uiB;
    bool signB;
    int_fast16_t expB;
    uint_fast64_t sigB;
    bool signZ;
    struct exp16_sig64 normExpSig;
    int_fast16_t expZ;
    uint32_t recip32, sig32Z, doubleTerm;
    uint_fast64_t rem;
    uint32_t q;
    uint_fast64_t sigZ;
    uint_fast64_t uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF64UI( uiA );
    expA  = expF64UI( uiA );
    sigA  = fracF64UI( uiA );
    uiB = b.v;
    signB = signF64UI( uiB );
    expB  = expF64UI( uiB );
    sigB  = fracF64UI( uiB );
    signZ = signA ^ signB;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0x7FF ) {
        if ( sigA ) goto propagateNaN;
        if ( expB == 0x7FF ) {
            if ( sigB ) goto propagateNaN;
            goto invalid;
        }
        goto infinity;
    }
    if ( expB == 0x7FF ) {
        if ( sigB ) goto propagateNaN;
        goto zero;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expB ) {
        if ( ! sigB ) {
            if ( ! (expA | sigA) ) goto invalid;
            raiseFlags( flag_infinite );
            goto infinity;
        }
        normExpSig = softfloat_normSubnormalF64Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    if ( ! expA ) {
        if ( ! sigA ) goto zero;
        normExpSig = softfloat_normSubnormalF64Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expZ = expA - expB + 0x3FE;
    sigA |= UINT64_C( 0x0010000000000000 );
    sigB |= UINT64_C( 0x0010000000000000 );
    if ( sigA < sigB ) {
        --expZ;
        sigA <<= 11;
    } else {
        sigA <<= 10;
    }
    sigB <<= 11;
    recip32 = softfloat_approxRecip32_1( sigB>>32 ) - 2;
    sig32Z = ((uint32_t) (sigA>>32) * (uint_fast64_t) recip32)>>32;
    doubleTerm = sig32Z<<1;
    rem =
        ((sigA - (uint_fast64_t) doubleTerm * (uint32_t) (sigB>>32))<<28)
            - (uint_fast64_t) doubleTerm * ((uint32_t) sigB>>4);
    q = (((uint32_t) (rem>>32) * (uint_fast64_t) recip32)>>32) + 4;
    sigZ = ((uint_fast64_t) sig32Z<<32) + ((uint_fast64_t) q<<4);
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( (sigZ & 0x1FF) < 4<<4 ) {
        q &= ~7;
        sigZ &= ~(uint_fast64_t) 0x7F;
        doubleTerm = q<<1;
        rem =
            ((rem - (uint_fast64_t) doubleTerm * (uint32_t) (sigB>>32))<<28)
                - (uint_fast64_t) doubleTerm * ((uint32_t) sigB>>4);
        if ( rem & UINT64_C( 0x8000000000000000 ) ) {
            sigZ -= 1<<7;
        } else {
            if ( rem ) sigZ |= 1;
        }
    }
    return softfloat_roundPackToF64( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF64UI( uiA, uiB );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 invalid:
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF64UI;
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 infinity:
    uiZ = packToF64UI( signZ, 0x7FF, 0 );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 zero:
    uiZ = packToF64UI( signZ, 0, 0 );
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static bool f64_eq( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    uint_fast64_t uiB;

    uiA = a.v;
    uiB = b.v;
    if ( isNaNF64UI( uiA ) || isNaNF64UI( uiB ) )
    {
        if ( softfloat_isSigNaNF64UI( uiA ) || softfloat_isSigNaNF64UI( uiB ) )
            raiseFlags( flag_invalid );
        return false;
    }
    return (uiA == uiB) || ! ((uiA | uiB) & UINT64_C( 0x7FFFFFFFFFFFFFFF ));
}

static bool f64_le( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    uint_fast64_t uiB;
    bool signA, signB;

    uiA = a.v;
    uiB = b.v;
    if ( isNaNF64UI( uiA ) || isNaNF64UI( uiB ) ) {
        raiseFlags( flag_invalid );
        return false;
    }
    signA = signF64UI( uiA );
    signB = signF64UI( uiB );
    return (signA != signB) ? signA || ! ((uiA | uiB) & UINT64_C( 0x7FFFFFFFFFFFFFFF ))
                            : (uiA == uiB) || (signA ^ (uiA < uiB));
}

static bool f64_lt( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    uint_fast64_t uiB;
    bool signA, signB;

    uiA = a.v;
    uiB = b.v;
    if ( isNaNF64UI( uiA ) || isNaNF64UI( uiB ) ) {
        raiseFlags( flag_invalid );
        return false;
    }
    signA = signF64UI( uiA );
    signB = signF64UI( uiB );
    return (signA != signB) ? signA && ((uiA | uiB) & UINT64_C( 0x7FFFFFFFFFFFFFFF ))
                            : (uiA != uiB) && (signA ^ (uiA < uiB));
}

static float64_t f64_mulAdd( float64_t a, float64_t b, float64_t c )
{
    uint_fast64_t uiA;
    uint_fast64_t uiB;
    uint_fast64_t uiC;

    uiA = a.v;
    uiB = b.v;
    uiC = c.v;
    return softfloat_mulAddF64( uiA, uiB, uiC, 0 );
}

static float64_t f64_mul( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast64_t sigA;
    uint_fast64_t uiB;
    bool signB;
    int_fast16_t expB;
    uint_fast64_t sigB;
    bool signZ;
    uint_fast64_t magBits;
    struct exp16_sig64 normExpSig;
    int_fast16_t expZ;
    struct uint128 sig128Z;
    uint_fast64_t sigZ, uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF64UI( uiA );
    expA  = expF64UI( uiA );
    sigA  = fracF64UI( uiA );
    uiB = b.v;
    signB = signF64UI( uiB );
    expB  = expF64UI( uiB );
    sigB  = fracF64UI( uiB );
    signZ = signA ^ signB;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0x7FF ) {
        if ( sigA || ((expB == 0x7FF) && sigB) ) goto propagateNaN;
        magBits = expB | sigB;
        goto infArg;
    }
    if ( expB == 0x7FF ) {
        if ( sigB ) goto propagateNaN;
        magBits = expA | sigA;
        goto infArg;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expA ) {
        if ( ! sigA ) goto zero;
        normExpSig = softfloat_normSubnormalF64Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    if ( ! expB ) {
        if ( ! sigB ) goto zero;
        normExpSig = softfloat_normSubnormalF64Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expZ = expA + expB - 0x3FF;
    sigA = (sigA | UINT64_C( 0x0010000000000000 ))<<10;
    sigB = (sigB | UINT64_C( 0x0010000000000000 ))<<11;
    sig128Z = softfloat_mul64To128( sigA, sigB );
    sigZ = sig128Z.v64 | (sig128Z.v0 != 0);

    if ( sigZ < UINT64_C( 0x4000000000000000 ) ) {
        --expZ;
        sigZ <<= 1;
    }
    return softfloat_roundPackToF64( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF64UI( uiA, uiB );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 infArg:
    if ( ! magBits ) {
        raiseFlags( flag_invalid );
        uiZ = defaultNaNF64UI;
    } else {
        uiZ = packToF64UI( signZ, 0x7FF, 0 );
    }
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 zero:
    uiZ = packToF64UI( signZ, 0, 0 );
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static float64_t f64_rem( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast64_t sigA;
    uint_fast64_t uiB;
    int_fast16_t expB;
    uint_fast64_t sigB;
    struct exp16_sig64 normExpSig;
    uint64_t rem;
    int_fast16_t expDiff;
    uint32_t q, recip32;
    uint_fast64_t q64;
    uint64_t altRem, meanRem;
    bool signRem;
    uint_fast64_t uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF64UI( uiA );
    expA  = expF64UI( uiA );
    sigA  = fracF64UI( uiA );
    uiB = b.v;
    expB = expF64UI( uiB );
    sigB = fracF64UI( uiB );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0x7FF ) {
        if ( sigA || ((expB == 0x7FF) && sigB) ) goto propagateNaN;
        goto invalid;
    }
    if ( expB == 0x7FF ) {
        if ( sigB ) goto propagateNaN;
        return a;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA < expB - 1 ) return a;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expB ) {
        if ( ! sigB ) goto invalid;
        normExpSig = softfloat_normSubnormalF64Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    if ( ! expA ) {
        if ( ! sigA ) return a;
        normExpSig = softfloat_normSubnormalF64Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    rem = sigA | UINT64_C( 0x0010000000000000 );
    sigB |= UINT64_C( 0x0010000000000000 );
    expDiff = expA - expB;
    if ( expDiff < 1 ) {
        if ( expDiff < -1 ) return a;
        sigB <<= 9;
        if ( expDiff ) {
            rem <<= 8;
            q = 0;
        } else {
            rem <<= 9;
            q = (sigB <= rem);
            if ( q ) rem -= sigB;
        }
    } else {
        recip32 = softfloat_approxRecip32_1( sigB>>21 );
        /*--------------------------------------------------------------------
        | Changing the shift of `rem' here requires also changing the initial
        | subtraction from `expDiff'.
        *--------------------------------------------------------------------*/
        rem <<= 9;
        expDiff -= 30;
        /*--------------------------------------------------------------------
        | The scale of `sigB' affects how many bits are obtained during each
        | cycle of the loop.  Currently this is 29 bits per loop iteration,
        | the maximum possible.
        *--------------------------------------------------------------------*/
        sigB <<= 9;
        for (;;) {
            q64 = (uint32_t) (rem>>32) * (uint_fast64_t) recip32;
            if ( expDiff < 0 ) break;
            q = (q64 + 0x80000000)>>32;
            rem <<= 29;
            rem -= q * (uint64_t) sigB;
            if ( rem & UINT64_C( 0x8000000000000000 ) ) rem += sigB;
            expDiff -= 29;
        }
        /*--------------------------------------------------------------------
        | (`expDiff' cannot be less than -29 here.)
        *--------------------------------------------------------------------*/
        q = (uint32_t) (q64>>32)>>(~expDiff & 31);
        rem = (rem<<(expDiff + 30)) - q * (uint64_t) sigB;
        if ( rem & UINT64_C( 0x8000000000000000 ) ) {
            altRem = rem + sigB;
            goto selectRem;
        }
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    do {
        altRem = rem;
        ++q;
        rem -= sigB;
    } while ( ! (rem & UINT64_C( 0x8000000000000000 )) );
 selectRem:
    meanRem = rem + altRem;
    if (
        (meanRem & UINT64_C( 0x8000000000000000 )) || (! meanRem && (q & 1))
    ) {
        rem = altRem;
    }
    signRem = signA;
    if ( rem & UINT64_C( 0x8000000000000000 ) ) {
        signRem = ! signRem;
        //fixed unsigned unary minus: -x == ~x + 1
        rem = ~rem + 1;
    }
    return softfloat_normRoundPackToF64( signRem, expB, rem );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF64UI( uiA, uiB );
    goto uiZ;
 invalid:
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF64UI;
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static float64_t f64_roundToInt( float64_t a, uint_fast8_t roundingMode, bool exact )
{
    uint_fast64_t uiA;
    int_fast16_t exp;
    uint_fast64_t uiZ, lastBitMask, roundBitsMask;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    exp = expF64UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( exp <= 0x3FE ) {
        if ( ! (uiA & UINT64_C( 0x7FFFFFFFFFFFFFFF )) ) return a;
        if ( exact ) raiseFlags(flag_inexact);
        uiZ = uiA & packToF64UI( 1, 0, 0 );
        switch ( roundingMode ) {
         case round_near_even:
            if ( ! fracF64UI( uiA ) ) break;
            /* fallthrough */
         case round_near_maxMag:
            if ( exp == 0x3FE ) uiZ |= packToF64UI( 0, 0x3FF, 0 );
            break;
         case round_min:
            if ( uiZ ) uiZ = packToF64UI( 1, 0x3FF, 0 );
            break;
         case round_max:
            if ( ! uiZ ) uiZ = packToF64UI( 0, 0x3FF, 0 );
            break;
        }
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( 0x433 <= exp ) {
        if ( (exp == 0x7FF) && fracF64UI( uiA ) ) {
            uiZ = softfloat_propagateNaNF64UI( uiA, 0 );
            goto uiZ;
        }
        return a;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiZ = uiA;
    lastBitMask = (uint_fast64_t) 1<<(0x433 - exp);
    roundBitsMask = lastBitMask - 1;
    if ( roundingMode == round_near_maxMag ) {
        uiZ += lastBitMask>>1;
    } else if ( roundingMode == round_near_even ) {
        uiZ += lastBitMask>>1;
        if ( ! (uiZ & roundBitsMask) ) uiZ &= ~lastBitMask;
    } else if (
        roundingMode
            == (signF64UI( uiZ ) ? round_min : round_max)
    ) {
        uiZ += roundBitsMask;
    }
    uiZ &= ~roundBitsMask;
    if ( exact && (uiZ != uiA) ) {
        raiseFlags(flag_inexact);
    }
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static float64_t f64_sqrt( float64_t a )
{
    uint_fast64_t uiA;
    bool signA;
    int_fast16_t expA;
    uint_fast64_t sigA, uiZ;
    struct exp16_sig64 normExpSig;
    int_fast16_t expZ;
    uint32_t sig32A, recipSqrt32, sig32Z;
    uint_fast64_t rem;
    uint32_t q;
    uint_fast64_t sigZ, shiftedSigZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    signA = signF64UI( uiA );
    expA  = expF64UI( uiA );
    sigA  = fracF64UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0x7FF ) {
        if ( sigA ) {
            uiZ = softfloat_propagateNaNF64UI( uiA, 0 );
            goto uiZ;
        }
        if ( ! signA ) return a;
        goto invalid;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( signA ) {
        if ( ! (expA | sigA) ) return a;
        goto invalid;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expA ) {
        if ( ! sigA ) return a;
        normExpSig = softfloat_normSubnormalF64Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    | (`sig32Z' is guaranteed to be a lower bound on the square root of
    | `sig32A', which makes `sig32Z' also a lower bound on the square root of
    | `sigA'.)
    *------------------------------------------------------------------------*/
    expZ = ((expA - 0x3FF)>>1) + 0x3FE;
    expA &= 1;
    sigA |= UINT64_C( 0x0010000000000000 );
    sig32A = (uint32_t)(sigA>>21); //fixed warning on type cast
    recipSqrt32 = softfloat_approxRecipSqrt32_1( expA, sig32A );
    sig32Z = ((uint_fast64_t) sig32A * recipSqrt32)>>32;
    if ( expA ) {
        sigA <<= 8;
        sig32Z >>= 1;
    } else {
        sigA <<= 9;
    }
    rem = sigA - (uint_fast64_t) sig32Z * sig32Z;
    q = ((uint32_t) (rem>>2) * (uint_fast64_t) recipSqrt32)>>32;
    sigZ = ((uint_fast64_t) sig32Z<<32 | 1<<5) + ((uint_fast64_t) q<<3);
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( (sigZ & 0x1FF) < 0x22 ) {
        sigZ &= ~(uint_fast64_t) 0x3F;
        shiftedSigZ = sigZ>>6;
        rem = (sigA<<52) - shiftedSigZ * shiftedSigZ;
        if ( rem & UINT64_C( 0x8000000000000000 ) ) {
            --sigZ;
        } else {
            if ( rem ) sigZ |= 1;
        }
    }
    return softfloat_roundPackToF64( 0, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 invalid:
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF64UI;
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static float64_t f64_sub( float64_t a, float64_t b )
{
    uint_fast64_t uiA;
    bool signA;
    uint_fast64_t uiB;
    bool signB;

    uiA = a.v;
    signA = signF64UI( uiA );
    uiB = b.v;
    signB = signF64UI( uiB );

    if ( signA == signB ) {
        return softfloat_subMagsF64( uiA, uiB, signA );
    } else {
        return softfloat_addMagsF64( uiA, uiB, signA );
    }
}

static float32_t f64_to_f32( float64_t a )
{
    uint_fast64_t uiA;
    bool sign;
    int_fast16_t exp;
    uint_fast64_t frac;
    struct commonNaN commonNaN;
    uint_fast32_t uiZ, frac32;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    sign = signF64UI( uiA );
    exp  = expF64UI( uiA );
    frac = fracF64UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( exp == 0x7FF ) {
        if ( frac ) {
            softfloat_f64UIToCommonNaN( uiA, &commonNaN );
            uiZ = softfloat_commonNaNToF32UI( &commonNaN );
        } else {
            uiZ = packToF32UI( sign, 0xFF, 0 );
        }
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    frac32 = (uint_fast32_t)softfloat_shortShiftRightJam64( frac, 22 ); //fixed warning on type cast
    if ( ! (exp | frac32) ) {
        uiZ = packToF32UI( sign, 0, 0 );
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    return softfloat_roundPackToF32( sign, exp - 0x381, frac32 | 0x40000000 );
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static int_fast32_t f64_to_i32( float64_t a, uint_fast8_t roundingMode, bool exact )
{
    uint_fast64_t uiA;
    bool sign;
    int_fast16_t exp;
    uint_fast64_t sig;
    int_fast16_t shiftDist;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    sign = signF64UI( uiA );
    exp  = expF64UI( uiA );
    sig  = fracF64UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
#if (i32_fromNaN != i32_fromPosOverflow) || (i32_fromNaN != i32_fromNegOverflow)
    if ( (exp == 0x7FF) && sig ) {
#if (i32_fromNaN == i32_fromPosOverflow)
        sign = 0;
#elif (i32_fromNaN == i32_fromNegOverflow)
        sign = 1;
#else
        raiseFlags( flag_invalid );
        return i32_fromNaN;
#endif
    }
#endif
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( exp ) sig |= UINT64_C( 0x0010000000000000 );
    shiftDist = 0x427 - exp;
    if ( 0 < shiftDist ) sig = softfloat_shiftRightJam64( sig, shiftDist );
    return softfloat_roundToI32( sign, sig, roundingMode, exact );
}

static int_fast64_t f64_to_i64(float64_t a, uint_fast8_t roundingMode, bool exact )
{
    uint_fast64_t uiA;
    bool sign;
    int_fast16_t exp;
    uint_fast64_t sig;
    int_fast16_t shiftDist;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    sign = signF64UI(uiA);
    exp = expF64UI(uiA);
    sig = fracF64UI(uiA);
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
#if (i64_fromNaN != i64_fromPosOverflow) || (i64_fromNaN != i64_fromNegOverflow)
    if ((exp == 0x7FF) && sig) {
#if (i64_fromNaN == i64_fromPosOverflow)
        sign = 0;
#elif (i64_fromNaN == i64_fromNegOverflow)
        sign = 1;
#else
        raiseFlags(flag_invalid);
        return i64_fromNaN;
#endif
    }
#endif
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if (exp) sig |= UINT64_C(0x0010000000000000);
    shiftDist = 0x433 - exp;
    if (shiftDist <= 0) {
        bool isValid = shiftDist >= -11;
        if (isValid)
        {
            uint_fast64_t z = sig << -shiftDist;
            if (0 == (z & UINT64_C(0x8000000000000000)))
            {
                return sign ? -(int_fast64_t)z : (int_fast64_t)z;
            }
        }
        raiseFlags(flag_invalid);
        return sign ? i64_fromNegOverflow : i64_fromPosOverflow;
    }
    else {
        if (shiftDist < 64)
            return
                softfloat_roundToI64(
                    sign, sig >> shiftDist, sig << (-shiftDist & 63), roundingMode, exact);
        else
            return
                softfloat_roundToI64(
                    sign, 0, (shiftDist == 64) ? sig : (sig != 0), roundingMode, exact);
    }
}

static int_fast32_t f64_to_i32_r_minMag( float64_t a, bool exact )
{
    uint_fast64_t uiA;
    int_fast16_t exp;
    uint_fast64_t sig;
    int_fast16_t shiftDist;
    bool sign;
    int_fast32_t absZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    uiA = a.v;
    exp = expF64UI( uiA );
    sig = fracF64UI( uiA );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    shiftDist = 0x433 - exp;
    if ( 53 <= shiftDist ) {
        if ( exact && (exp | sig) ) {
            raiseFlags(flag_inexact);
        }
        return 0;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sign = signF64UI( uiA );
    if ( shiftDist < 22 ) {
        if (
            sign && (exp == 0x41E) && (sig < UINT64_C( 0x0000000000200000 ))
        ) {
            if ( exact && sig ) {
                raiseFlags(flag_inexact);
            }
            return -0x7FFFFFFF - 1;
        }
        raiseFlags( flag_invalid );
        return
            (exp == 0x7FF) && sig ? i32_fromNaN
                : sign ? i32_fromNegOverflow : i32_fromPosOverflow;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sig |= UINT64_C( 0x0010000000000000 );
    absZ = (int_fast32_t)(sig>>shiftDist); //fixed warning on type cast
    if ( exact && ((uint_fast64_t) (uint_fast32_t) absZ<<shiftDist != sig) ) {
        raiseFlags(flag_inexact);
    }
    return sign ? -absZ : absZ;
}

static float32_t i32_to_f32( int32_t a )
{
    bool sign;
    uint_fast32_t absA;

    sign = (a < 0);
    if ( ! (a & 0x7FFFFFFF) ) {
        return float32_t::fromRaw(sign ? packToF32UI( 1, 0x9E, 0 ) : 0);
    }
    //fixed unsigned unary minus: -x == ~x + 1
    absA = sign ? (~(uint_fast32_t) a + 1) : (uint_fast32_t) a;
    return softfloat_normRoundPackToF32( sign, 0x9C, absA );
}

static float64_t i32_to_f64( int32_t a )
{
    uint_fast64_t uiZ;
    bool sign;
    uint_fast32_t absA;
    int_fast8_t shiftDist;

    if ( ! a ) {
        uiZ = 0;
    } else {
        sign = (a < 0);
        //fixed unsigned unary minus: -x == ~x + 1
        absA = sign ? (~(uint_fast32_t) a + 1) : (uint_fast32_t) a;
        shiftDist = softfloat_countLeadingZeros32( absA ) + 21;
        uiZ =
            packToF64UI(
                sign, 0x432 - shiftDist, (uint_fast64_t) absA<<shiftDist );
    }
    return float64_t::fromRaw(uiZ);
}

static float32_t i64_to_f32( int64_t a )
{
    bool sign;
    uint_fast64_t absA;
    int_fast8_t shiftDist;
    uint_fast32_t sig;

    sign = (a < 0);
    //fixed unsigned unary minus: -x == ~x + 1
    absA = sign ? (~(uint_fast64_t) a + 1) : (uint_fast64_t) a;
    shiftDist = softfloat_countLeadingZeros64( absA ) - 40;
    if ( 0 <= shiftDist ) {
        return float32_t::fromRaw(a ? packToF32UI(sign, 0x95 - shiftDist, (uint_fast32_t) absA<<shiftDist ) : 0);
    } else {
        shiftDist += 7;
        sig =
            (shiftDist < 0)
                ? (uint_fast32_t) softfloat_shortShiftRightJam64( absA, -shiftDist ) //fixed warning on type cast
                : (uint_fast32_t) absA<<shiftDist;
        return softfloat_roundPackToF32( sign, 0x9C - shiftDist, sig );
    }
}

static float64_t i64_to_f64( int64_t a )
{
    bool sign;
    uint_fast64_t absA;

    sign = (a < 0);
    if ( ! (a & UINT64_C( 0x7FFFFFFFFFFFFFFF )) ) {
        return float64_t::fromRaw(sign ? packToF64UI( 1, 0x43E, 0 ) : 0);
    }
    //fixed unsigned unary minus: -x == ~x + 1
    absA = sign ? (~(uint_fast64_t) a + 1) : (uint_fast64_t) a;
    return softfloat_normRoundPackToF64( sign, 0x43C, absA );
}

static float32_t softfloat_addMagsF32( uint_fast32_t uiA, uint_fast32_t uiB )
{
    int_fast16_t expA;
    uint_fast32_t sigA;
    int_fast16_t expB;
    uint_fast32_t sigB;
    int_fast16_t expDiff;
    uint_fast32_t uiZ;
    bool signZ;
    int_fast16_t expZ;
    uint_fast32_t sigZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expA = expF32UI( uiA );
    sigA = fracF32UI( uiA );
    expB = expF32UI( uiB );
    sigB = fracF32UI( uiB );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expDiff = expA - expB;
    if ( ! expDiff ) {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( ! expA ) {
            uiZ = uiA + sigB;
            goto uiZ;
        }
        if ( expA == 0xFF ) {
            if ( sigA | sigB ) goto propagateNaN;
            uiZ = uiA;
            goto uiZ;
        }
        signZ = signF32UI( uiA );
        expZ = expA;
        sigZ = 0x01000000 + sigA + sigB;
        if ( ! (sigZ & 1) && (expZ < 0xFE) ) {
            uiZ = packToF32UI( signZ, expZ, sigZ>>1 );
            goto uiZ;
        }
        sigZ <<= 6;
    } else {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        signZ = signF32UI( uiA );
        sigA <<= 6;
        sigB <<= 6;
        if ( expDiff < 0 ) {
            if ( expB == 0xFF ) {
                if ( sigB ) goto propagateNaN;
                uiZ = packToF32UI( signZ, 0xFF, 0 );
                goto uiZ;
            }
            expZ = expB;
            sigA += expA ? 0x20000000 : sigA;
            sigA = softfloat_shiftRightJam32( sigA, -expDiff );
        } else {
            if ( expA == 0xFF ) {
                if ( sigA ) goto propagateNaN;
                uiZ = uiA;
                goto uiZ;
            }
            expZ = expA;
            sigB += expB ? 0x20000000 : sigB;
            sigB = softfloat_shiftRightJam32( sigB, expDiff );
        }
        sigZ = 0x20000000 + sigA + sigB;
        if ( sigZ < 0x40000000 ) {
            --expZ;
            sigZ <<= 1;
        }
    }
    return softfloat_roundPackToF32( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF32UI( uiA, uiB );
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float64_t
 softfloat_addMagsF64( uint_fast64_t uiA, uint_fast64_t uiB, bool signZ )
{
    int_fast16_t expA;
    uint_fast64_t sigA;
    int_fast16_t expB;
    uint_fast64_t sigB;
    int_fast16_t expDiff;
    uint_fast64_t uiZ;
    int_fast16_t expZ;
    uint_fast64_t sigZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expA = expF64UI( uiA );
    sigA = fracF64UI( uiA );
    expB = expF64UI( uiB );
    sigB = fracF64UI( uiB );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expDiff = expA - expB;
    if ( ! expDiff ) {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( ! expA ) {
            uiZ = uiA + sigB;
            goto uiZ;
        }
        if ( expA == 0x7FF ) {
            if ( sigA | sigB ) goto propagateNaN;
            uiZ = uiA;
            goto uiZ;
        }
        expZ = expA;
        sigZ = UINT64_C( 0x0020000000000000 ) + sigA + sigB;
        sigZ <<= 9;
    } else {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        sigA <<= 9;
        sigB <<= 9;
        if ( expDiff < 0 ) {
            if ( expB == 0x7FF ) {
                if ( sigB ) goto propagateNaN;
                uiZ = packToF64UI( signZ, 0x7FF, 0 );
                goto uiZ;
            }
            expZ = expB;
            if ( expA ) {
                sigA += UINT64_C( 0x2000000000000000 );
            } else {
                sigA <<= 1;
            }
            sigA = softfloat_shiftRightJam64( sigA, -expDiff );
        } else {
            if ( expA == 0x7FF ) {
                if ( sigA ) goto propagateNaN;
                uiZ = uiA;
                goto uiZ;
            }
            expZ = expA;
            if ( expB ) {
                sigB += UINT64_C( 0x2000000000000000 );
            } else {
                sigB <<= 1;
            }
            sigB = softfloat_shiftRightJam64( sigB, expDiff );
        }
        sigZ = UINT64_C( 0x2000000000000000 ) + sigA + sigB;
        if ( sigZ < UINT64_C( 0x4000000000000000 ) ) {
            --expZ;
            sigZ <<= 1;
        }
    }
    return softfloat_roundPackToF64( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF64UI( uiA, uiB );
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a )
{
    int index;
    uint16_t eps, r0;
    uint_fast32_t ESqrR0;
    uint32_t sigma0;
    uint_fast32_t r;
    uint32_t sqrSigma0;

    index = (a>>27 & 0xE) + oddExpA;
    eps = (uint16_t) (a>>12);
    r0 = softfloat_approxRecipSqrt_1k0s[index]
             - ((softfloat_approxRecipSqrt_1k1s[index] * (uint_fast32_t) eps)
                    >>20);
    ESqrR0 = (uint_fast32_t) r0 * r0;
    if ( ! oddExpA ) ESqrR0 <<= 1;
    sigma0 = ~(uint_fast32_t) (((uint32_t) ESqrR0 * (uint_fast64_t) a)>>23);
    r = (uint_fast32_t)(((uint_fast32_t) r0<<16) + ((r0 * (uint_fast64_t) sigma0)>>25)); //fixed warning on type cast
    sqrSigma0 = ((uint_fast64_t) sigma0 * sigma0)>>32;
    r += ((uint32_t) ((r>>1) + (r>>3) - ((uint_fast32_t) r0<<14))
              * (uint_fast64_t) sqrSigma0)
             >>48;
    if ( ! (r & 0x80000000) ) r = 0x80000000;
    return r;
}

/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by `aPtr' into a 32-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
static uint_fast32_t softfloat_commonNaNToF32UI( const struct commonNaN *aPtr )
{
    return (uint_fast32_t) aPtr->sign<<31 | 0x7FC00000 | aPtr->v64>>41;
}

/*----------------------------------------------------------------------------
| Converts the common NaN pointed to by `aPtr' into a 64-bit floating-point
| NaN, and returns the bit pattern of this value as an unsigned integer.
*----------------------------------------------------------------------------*/
static uint_fast64_t softfloat_commonNaNToF64UI( const struct commonNaN *aPtr )
{
    return
        (uint_fast64_t) aPtr->sign<<63 | UINT64_C( 0x7FF8000000000000 )
            | aPtr->v64>>12;
}

static uint_fast8_t softfloat_countLeadingZeros64( uint64_t a )
{
    uint_fast8_t count;
    uint32_t a32;

    count = 0;
    a32 = a>>32;
    if ( ! a32 ) {
        count = 32;
        a32 = (uint32_t) a; //fixed warning on type cast
    }
    /*------------------------------------------------------------------------
    | From here, result is current count + count leading zeros of `a32'.
    *------------------------------------------------------------------------*/
    if ( a32 < 0x10000 ) {
        count += 16;
        a32 <<= 16;
    }
    if ( a32 < 0x1000000 ) {
        count += 8;
        a32 <<= 8;
    }
    count += softfloat_countLeadingZeros8[a32>>24];
    return count;
}

/*----------------------------------------------------------------------------
| Assuming `uiA' has the bit pattern of a 32-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'.  If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static void softfloat_f32UIToCommonNaN( uint_fast32_t uiA, struct commonNaN *zPtr )
{
    if ( softfloat_isSigNaNF32UI( uiA ) ) {
        raiseFlags( flag_invalid );
    }
    zPtr->sign = (uiA>>31) != 0;
    zPtr->v64  = (uint_fast64_t) uiA<<41;
    zPtr->v0   = 0;
}

/*----------------------------------------------------------------------------
| Assuming `uiA' has the bit pattern of a 64-bit floating-point NaN, converts
| this NaN to the common NaN form, and stores the resulting common NaN at the
| location pointed to by `zPtr'.  If the NaN is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static void softfloat_f64UIToCommonNaN( uint_fast64_t uiA, struct commonNaN *zPtr )
{
    if ( softfloat_isSigNaNF64UI( uiA ) ) {
        raiseFlags( flag_invalid );
    }
    zPtr->sign = (uiA>>63) != 0;
    zPtr->v64  = uiA<<12;
    zPtr->v0   = 0;
}

static struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b )
{
    uint32_t a32, a0, b32, b0;
    struct uint128 z;
    uint64_t mid1, mid;

    a32 = a>>32;
    a0 = (uint32_t)a; //fixed warning on type cast
    b32 = b>>32;
    b0 = (uint32_t) b; //fixed warning on type cast
    z.v0 = (uint_fast64_t) a0 * b0;
    mid1 = (uint_fast64_t) a32 * b0;
    mid = mid1 + (uint_fast64_t) a0 * b32;
    z.v64 = (uint_fast64_t) a32 * b32;
    z.v64 += (uint_fast64_t) (mid < mid1)<<32 | mid>>32;
    mid <<= 32;
    z.v0 += mid;
    z.v64 += (z.v0 < mid);
    return z;
}

static float32_t
 softfloat_mulAddF32(
     uint_fast32_t uiA, uint_fast32_t uiB, uint_fast32_t uiC, uint_fast8_t op )
{
    bool signA;
    int_fast16_t expA;
    uint_fast32_t sigA;
    bool signB;
    int_fast16_t expB;
    uint_fast32_t sigB;
    bool signC;
    int_fast16_t expC;
    uint_fast32_t sigC;
    bool signProd;
    uint_fast32_t magBits, uiZ;
    struct exp16_sig32 normExpSig;
    int_fast16_t expProd;
    uint_fast64_t sigProd;
    bool signZ;
    int_fast16_t expZ;
    uint_fast32_t sigZ;
    int_fast16_t expDiff;
    uint_fast64_t sig64Z, sig64C;
    int_fast8_t shiftDist;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    signA = signF32UI( uiA );
    expA  = expF32UI( uiA );
    sigA  = fracF32UI( uiA );
    signB = signF32UI( uiB );
    expB  = expF32UI( uiB );
    sigB  = fracF32UI( uiB );
    signC = signF32UI( uiC ) ^ (op == softfloat_mulAdd_subC);
    expC  = expF32UI( uiC );
    sigC  = fracF32UI( uiC );
    signProd = signA ^ signB ^ (op == softfloat_mulAdd_subProd);
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0xFF ) {
        if ( sigA || ((expB == 0xFF) && sigB) ) goto propagateNaN_ABC;
        magBits = expB | sigB;
        goto infProdArg;
    }
    if ( expB == 0xFF ) {
        if ( sigB ) goto propagateNaN_ABC;
        magBits = expA | sigA;
        goto infProdArg;
    }
    if ( expC == 0xFF ) {
        if ( sigC ) {
            uiZ = 0;
            goto propagateNaN_ZC;
        }
        uiZ = uiC;
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expA ) {
        if ( ! sigA ) goto zeroProd;
        normExpSig = softfloat_normSubnormalF32Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    if ( ! expB ) {
        if ( ! sigB ) goto zeroProd;
        normExpSig = softfloat_normSubnormalF32Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expProd = expA + expB - 0x7E;
    sigA = (sigA | 0x00800000)<<7;
    sigB = (sigB | 0x00800000)<<7;
    sigProd = (uint_fast64_t) sigA * sigB;
    if ( sigProd < UINT64_C( 0x2000000000000000 ) ) {
        --expProd;
        sigProd <<= 1;
    }
    signZ = signProd;
    if ( ! expC ) {
        if ( ! sigC ) {
            expZ = expProd - 1;
            sigZ = (uint_fast32_t) softfloat_shortShiftRightJam64( sigProd, 31 ); //fixed warning on type cast
            goto roundPack;
        }
        normExpSig = softfloat_normSubnormalF32Sig( sigC );
        expC = normExpSig.exp;
        sigC = normExpSig.sig;
    }
    sigC = (sigC | 0x00800000)<<6;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expDiff = expProd - expC;
    if ( signProd == signC ) {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( expDiff <= 0 ) {
            expZ = expC;
            sigZ = sigC + (uint_fast32_t) softfloat_shiftRightJam64( sigProd, 32 - expDiff ); //fixed warning on type cast
        } else {
            expZ = expProd;
            sig64Z =
                sigProd
                    + softfloat_shiftRightJam64(
                          (uint_fast64_t) sigC<<32, expDiff );
            sigZ = (uint_fast32_t) softfloat_shortShiftRightJam64( sig64Z, 32 ); //fixed warning on type cast
        }
        if ( sigZ < 0x40000000 ) {
            --expZ;
            sigZ <<= 1;
        }
    } else {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        sig64C = (uint_fast64_t) sigC<<32;
        if ( expDiff < 0 ) {
            signZ = signC;
            expZ = expC;
            sig64Z = sig64C - softfloat_shiftRightJam64( sigProd, -expDiff );
        } else if ( ! expDiff ) {
            expZ = expProd;
            sig64Z = sigProd - sig64C;
            if ( ! sig64Z ) goto completeCancellation;
            if ( sig64Z & UINT64_C( 0x8000000000000000 ) ) {
                signZ = ! signZ;
                //fixed unsigned unary minus: -x == ~x + 1
                sig64Z = ~sig64Z + 1;
            }
        } else {
            expZ = expProd;
            sig64Z = sigProd - softfloat_shiftRightJam64( sig64C, expDiff );
        }
        shiftDist = softfloat_countLeadingZeros64( sig64Z ) - 1;
        expZ -= shiftDist;
        shiftDist -= 32;
        if ( shiftDist < 0 ) {
            sigZ = (uint_fast32_t) softfloat_shortShiftRightJam64( sig64Z, -shiftDist ); //fixed warning on type cast
        } else {
            sigZ = (uint_fast32_t) sig64Z<<shiftDist;
        }
    }
 roundPack:
    return softfloat_roundPackToF32( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN_ABC:
    uiZ = softfloat_propagateNaNF32UI( uiA, uiB );
    goto propagateNaN_ZC;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 infProdArg:
    if ( magBits ) {
        uiZ = packToF32UI( signProd, 0xFF, 0 );
        if ( expC != 0xFF ) goto uiZ;
        if ( sigC ) goto propagateNaN_ZC;
        if ( signProd == signC ) goto uiZ;
    }
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF32UI;
 propagateNaN_ZC:
    uiZ = softfloat_propagateNaNF32UI( uiZ, uiC );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 zeroProd:
    uiZ = uiC;
    if ( ! (expC | sigC) && (signProd != signC) ) {
 completeCancellation:
        uiZ =
            packToF32UI((globalRoundingMode == round_min), 0, 0 );
    }
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float64_t
 softfloat_mulAddF64(
     uint_fast64_t uiA, uint_fast64_t uiB, uint_fast64_t uiC, uint_fast8_t op )
{
    bool signA;
    int_fast16_t expA;
    uint_fast64_t sigA;
    bool signB;
    int_fast16_t expB;
    uint_fast64_t sigB;
    bool signC;
    int_fast16_t expC;
    uint_fast64_t sigC;
    bool signZ;
    uint_fast64_t magBits, uiZ;
    struct exp16_sig64 normExpSig;
    int_fast16_t expZ;
    struct uint128 sig128Z;
    uint_fast64_t sigZ;
    int_fast16_t expDiff;
    struct uint128 sig128C;
    int_fast8_t shiftDist;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    signA = signF64UI( uiA );
    expA  = expF64UI( uiA );
    sigA  = fracF64UI( uiA );
    signB = signF64UI( uiB );
    expB  = expF64UI( uiB );
    sigB  = fracF64UI( uiB );
    signC = signF64UI( uiC ) ^ (op == softfloat_mulAdd_subC);
    expC  = expF64UI( uiC );
    sigC  = fracF64UI( uiC );
    signZ = signA ^ signB ^ (op == softfloat_mulAdd_subProd);
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( expA == 0x7FF ) {
        if ( sigA || ((expB == 0x7FF) && sigB) ) goto propagateNaN_ABC;
        magBits = expB | sigB;
        goto infProdArg;
    }
    if ( expB == 0x7FF ) {
        if ( sigB ) goto propagateNaN_ABC;
        magBits = expA | sigA;
        goto infProdArg;
    }
    if ( expC == 0x7FF ) {
        if ( sigC ) {
            uiZ = 0;
            goto propagateNaN_ZC;
        }
        uiZ = uiC;
        goto uiZ;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( ! expA ) {
        if ( ! sigA ) goto zeroProd;
        normExpSig = softfloat_normSubnormalF64Sig( sigA );
        expA = normExpSig.exp;
        sigA = normExpSig.sig;
    }
    if ( ! expB ) {
        if ( ! sigB ) goto zeroProd;
        normExpSig = softfloat_normSubnormalF64Sig( sigB );
        expB = normExpSig.exp;
        sigB = normExpSig.sig;
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expZ = expA + expB - 0x3FE;
    sigA = (sigA | UINT64_C( 0x0010000000000000 ))<<10;
    sigB = (sigB | UINT64_C( 0x0010000000000000 ))<<10;
    sig128Z = softfloat_mul64To128( sigA, sigB );
    if ( sig128Z.v64 < UINT64_C( 0x2000000000000000 ) ) {
        --expZ;
        sig128Z =
            softfloat_add128(
                sig128Z.v64, sig128Z.v0, sig128Z.v64, sig128Z.v0 );
    }
    if ( ! expC ) {
        if ( ! sigC ) {
            --expZ;
            sigZ = sig128Z.v64<<1 | (sig128Z.v0 != 0);
            goto roundPack;
        }
        normExpSig = softfloat_normSubnormalF64Sig( sigC );
        expC = normExpSig.exp;
        sigC = normExpSig.sig;
    }
    sigC = (sigC | UINT64_C( 0x0010000000000000 ))<<9;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    //fixed initialization
    sig128C.v0 = sig128C.v64 = 0;
    expDiff = expZ - expC;
    if ( expDiff < 0 ) {
        expZ = expC;
        if ( (signZ == signC) || (expDiff < -1) ) {
            sig128Z.v64 = softfloat_shiftRightJam64( sig128Z.v64, -expDiff );
        } else {
            sig128Z =
                softfloat_shortShiftRightJam128( sig128Z.v64, sig128Z.v0, 1 );
        }
    } else if ( expDiff ) {
        sig128C = softfloat_shiftRightJam128( sigC, 0, expDiff );
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( signZ == signC ) {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( expDiff <= 0 ) {
            sigZ = (sigC + sig128Z.v64) | (sig128Z.v0 != 0);
        } else {
            sig128Z =
                softfloat_add128(
                    sig128Z.v64, sig128Z.v0, sig128C.v64, sig128C.v0 );
            sigZ = sig128Z.v64 | (sig128Z.v0 != 0);
        }
        if ( sigZ < UINT64_C( 0x4000000000000000 ) ) {
            --expZ;
            sigZ <<= 1;
        }
    } else {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( expDiff < 0 ) {
            signZ = signC;
            sig128Z = softfloat_sub128( sigC, 0, sig128Z.v64, sig128Z.v0 );
        } else if ( ! expDiff ) {
            sig128Z.v64 = sig128Z.v64 - sigC;
            if ( ! (sig128Z.v64 | sig128Z.v0) ) goto completeCancellation;
            if ( sig128Z.v64 & UINT64_C( 0x8000000000000000 ) ) {
                signZ = ! signZ;
                sig128Z = softfloat_sub128( 0, 0, sig128Z.v64, sig128Z.v0 );
            }
        } else {
            sig128Z =
                softfloat_sub128(
                    sig128Z.v64, sig128Z.v0, sig128C.v64, sig128C.v0 );
        }
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( ! sig128Z.v64 ) {
            expZ -= 64;
            sig128Z.v64 = sig128Z.v0;
            sig128Z.v0 = 0;
        }
        shiftDist = softfloat_countLeadingZeros64( sig128Z.v64 ) - 1;
        expZ -= shiftDist;
        if ( shiftDist < 0 ) {
            sigZ = softfloat_shortShiftRightJam64( sig128Z.v64, -shiftDist );
        } else {
            sig128Z =
                softfloat_shortShiftLeft128(
                    sig128Z.v64, sig128Z.v0, shiftDist );
            sigZ = sig128Z.v64;
        }
        sigZ |= (sig128Z.v0 != 0);
    }
 roundPack:
    return softfloat_roundPackToF64( signZ, expZ, sigZ );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN_ABC:
    uiZ = softfloat_propagateNaNF64UI( uiA, uiB );
    goto propagateNaN_ZC;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 infProdArg:
    if ( magBits ) {
        uiZ = packToF64UI( signZ, 0x7FF, 0 );
        if ( expC != 0x7FF ) goto uiZ;
        if ( sigC ) goto propagateNaN_ZC;
        if ( signZ == signC ) goto uiZ;
    }
    raiseFlags( flag_invalid );
    uiZ = defaultNaNF64UI;
 propagateNaN_ZC:
    uiZ = softfloat_propagateNaNF64UI( uiZ, uiC );
    goto uiZ;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 zeroProd:
    uiZ = uiC;
    if ( ! (expC | sigC) && (signZ != signC) ) {
 completeCancellation:
        uiZ =
            packToF64UI((globalRoundingMode == round_min), 0, 0 );
    }
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static float32_t
 softfloat_normRoundPackToF32( bool sign, int_fast16_t exp, uint_fast32_t sig )
{
    int_fast8_t shiftDist;

    shiftDist = softfloat_countLeadingZeros32( sig ) - 1;
    exp -= shiftDist;
    if ( (7 <= shiftDist) && ((unsigned int) exp < 0xFD) ) {
        return float32_t::fromRaw(packToF32UI( sign, sig ? exp : 0, sig<<(shiftDist - 7) ));
    } else {
        return softfloat_roundPackToF32( sign, exp, sig<<shiftDist );
    }
}

static float64_t
 softfloat_normRoundPackToF64( bool sign, int_fast16_t exp, uint_fast64_t sig )
{
    int_fast8_t shiftDist;

    shiftDist = softfloat_countLeadingZeros64( sig ) - 1;
    exp -= shiftDist;
    if ( (10 <= shiftDist) && ((unsigned int) exp < 0x7FD) ) {
        return float64_t::fromRaw(packToF64UI( sign, sig ? exp : 0, sig<<(shiftDist - 10) ));
    } else {
        return softfloat_roundPackToF64( sign, exp, sig<<shiftDist );
    }
}

static struct exp16_sig32 softfloat_normSubnormalF32Sig( uint_fast32_t sig )
{
    int_fast8_t shiftDist;
    struct exp16_sig32 z;

    shiftDist = softfloat_countLeadingZeros32( sig ) - 8;
    z.exp = 1 - shiftDist;
    z.sig = sig<<shiftDist;
    return z;
}

static struct exp16_sig64 softfloat_normSubnormalF64Sig( uint_fast64_t sig )
{
    int_fast8_t shiftDist;
    struct exp16_sig64 z;

    shiftDist = softfloat_countLeadingZeros64( sig ) - 11;
    z.exp = 1 - shiftDist;
    z.sig = sig<<shiftDist;
    return z;
}

/*----------------------------------------------------------------------------
| Interpreting `uiA' and `uiB' as the bit patterns of two 32-bit floating-
| point values, at least one of which is a NaN, returns the bit pattern of
| the combined NaN result.  If either `uiA' or `uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static uint_fast32_t
 softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB )
{
    bool isSigNaNA;

    isSigNaNA = softfloat_isSigNaNF32UI( uiA );
    if ( isSigNaNA || softfloat_isSigNaNF32UI( uiB ) ) {
        raiseFlags( flag_invalid );
        if ( isSigNaNA ) return uiA | 0x00400000;
    }
    return (isNaNF32UI( uiA ) ? uiA : uiB) | 0x00400000;
}

/*----------------------------------------------------------------------------
| Interpreting `uiA' and `uiB' as the bit patterns of two 64-bit floating-
| point values, at least one of which is a NaN, returns the bit pattern of
| the combined NaN result.  If either `uiA' or `uiB' has the pattern of a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static uint_fast64_t
 softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB )
{
    bool isSigNaNA;

    isSigNaNA = softfloat_isSigNaNF64UI( uiA );
    if ( isSigNaNA || softfloat_isSigNaNF64UI( uiB ) ) {
        raiseFlags( flag_invalid );
        if ( isSigNaNA ) return uiA | UINT64_C( 0x0008000000000000 );
    }
    return (isNaNF64UI( uiA ) ? uiA : uiB) | UINT64_C( 0x0008000000000000 );
}

static float32_t
 softfloat_roundPackToF32( bool sign, int_fast16_t exp, uint_fast32_t sig )
{
    uint_fast8_t roundingMode;
    bool roundNearEven;
    uint_fast8_t roundIncrement, roundBits;
    bool isTiny;
    uint_fast32_t uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    roundingMode = globalRoundingMode;
    roundNearEven = (roundingMode == round_near_even);
    roundIncrement = 0x40;
    if ( ! roundNearEven && (roundingMode != round_near_maxMag) ) {
        roundIncrement =
            (roundingMode
                 == (sign ? round_min : round_max))
                ? 0x7F
                : 0;
    }
    roundBits = sig & 0x7F;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( 0xFD <= (unsigned int) exp ) {
        if ( exp < 0 ) {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            isTiny =
                (globalDetectTininess == tininess_beforeRounding)
                    || (exp < -1) || (sig + roundIncrement < 0x80000000);
            sig = softfloat_shiftRightJam32( sig, -exp );
            exp = 0;
            roundBits = sig & 0x7F;
            if ( isTiny && roundBits ) {
                raiseFlags( flag_underflow );
            }
        } else if ( (0xFD < exp) || (0x80000000 <= sig + roundIncrement) ) {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            raiseFlags(
                flag_overflow | flag_inexact );
            uiZ = packToF32UI( sign, 0xFF, 0 ) - ! roundIncrement;
            goto uiZ;
        }
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sig = (sig + roundIncrement)>>7;
    if ( roundBits ) {
        raiseFlags(flag_inexact);
        if ( roundingMode == round_odd ) {
            sig |= 1;
            goto packReturn;
        }
    }
    sig &= ~(uint_fast32_t) (! (roundBits ^ 0x40) & roundNearEven);
    if ( ! sig ) exp = 0;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 packReturn:
    uiZ = packToF32UI( sign, exp, sig );
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float64_t
 softfloat_roundPackToF64( bool sign, int_fast16_t exp, uint_fast64_t sig )
{
    uint_fast8_t roundingMode;
    bool roundNearEven;
    uint_fast16_t roundIncrement, roundBits;
    bool isTiny;
    uint_fast64_t uiZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    roundingMode = globalRoundingMode;
    roundNearEven = (roundingMode == round_near_even);
    roundIncrement = 0x200;
    if ( ! roundNearEven && (roundingMode != round_near_maxMag) ) {
        roundIncrement =
            (roundingMode
                 == (sign ? round_min : round_max))
                ? 0x3FF
                : 0;
    }
    roundBits = sig & 0x3FF;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    if ( 0x7FD <= (uint16_t) exp ) {
        if ( exp < 0 ) {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            isTiny =
                (globalDetectTininess == tininess_beforeRounding)
                    || (exp < -1)
                    || (sig + roundIncrement < UINT64_C( 0x8000000000000000 ));
            sig = softfloat_shiftRightJam64( sig, -exp );
            exp = 0;
            roundBits = sig & 0x3FF;
            if ( isTiny && roundBits ) {
                raiseFlags( flag_underflow );
            }
        } else if (
            (0x7FD < exp)
                || (UINT64_C( 0x8000000000000000 ) <= sig + roundIncrement)
        ) {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            raiseFlags(
                flag_overflow | flag_inexact );
            uiZ = packToF64UI( sign, 0x7FF, 0 ) - ! roundIncrement;
            goto uiZ;
        }
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    sig = (sig + roundIncrement)>>10;
    if ( roundBits ) {
        raiseFlags(flag_inexact);
        if ( roundingMode == round_odd ) {
            sig |= 1;
            goto packReturn;
        }
    }
    sig &= ~(uint_fast64_t) (! (roundBits ^ 0x200) & roundNearEven);
    if ( ! sig ) exp = 0;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 packReturn:
    uiZ = packToF64UI( sign, exp, sig );
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static int_fast32_t
 softfloat_roundToI32(
     bool sign, uint_fast64_t sig, uint_fast8_t roundingMode, bool exact )
{
    bool roundNearEven;
    uint_fast16_t roundIncrement, roundBits;
    uint_fast32_t sig32;
    union { uint32_t ui; int32_t i; } uZ;
    int_fast32_t z;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    roundNearEven = (roundingMode == round_near_even);
    roundIncrement = 0x800;
    if ( ! roundNearEven && (roundingMode != round_near_maxMag) ) {
        roundIncrement =
            (roundingMode
                 == (sign ? round_min : round_max))
                ? 0xFFF
                : 0;
    }
    roundBits = sig & 0xFFF;
    sig += roundIncrement;
    if ( sig & UINT64_C( 0xFFFFF00000000000 ) ) goto invalid;
    sig32 = (uint_fast32_t)(sig>>12); //fixed warning on type cast
    sig32 &= ~(uint_fast32_t) (! (roundBits ^ 0x800) & roundNearEven);
    //fixed unsigned unary minus: -x == ~x + 1
    uZ.ui = sign ? (~sig32 + 1) : sig32;
    z = uZ.i;
    if ( z && ((z < 0) ^ sign) ) goto invalid;
    if ( exact && roundBits ) {
        raiseFlags(flag_inexact);
    }
    return z;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 invalid:
    raiseFlags( flag_invalid );
    return sign ? i32_fromNegOverflow : i32_fromPosOverflow;
}

static int_fast64_t
 softfloat_roundToI64(
    bool sign, uint_fast64_t sig, uint_fast64_t sigExtra, uint_fast8_t roundingMode, bool exact )
{
    bool roundNearEven, doIncrement;
    union { uint64_t ui; int64_t i; } uZ;
    int_fast64_t z;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    roundNearEven = (roundingMode == round_near_even);
    doIncrement = (UINT64_C(0x8000000000000000) <= sigExtra);
    if (!roundNearEven && (roundingMode != round_near_maxMag)) {
        doIncrement =
            (roundingMode
                == (sign ? round_min : round_max))
            && sigExtra;
    }
    if (doIncrement) {
        ++sig;
        if (!sig) goto invalid;
        sig &=
            ~(uint_fast64_t)
            (!(sigExtra & UINT64_C(0x7FFFFFFFFFFFFFFF))
                & roundNearEven);
    }
    uZ.ui = sign ? (~sig + 1) : sig;
    z = uZ.i;
    if (z && ((z < 0) ^ sign)) goto invalid;
    if (exact && sigExtra) {
        raiseFlags(flag_inexact);
    }
    return z;
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
invalid:
    raiseFlags(flag_invalid);
    return sign ? i64_fromNegOverflow : i64_fromPosOverflow;
}

static struct uint128
 softfloat_shiftRightJam128( uint64_t a64, uint64_t a0, uint_fast32_t dist )
{
    uint_fast8_t u8NegDist;
    struct uint128 z;

    if ( dist < 64 ) {
        //fixed unsigned unary minus: -x == ~x + 1 , fixed type cast
        u8NegDist = (uint_fast8_t)(~dist + 1);
        z.v64 = a64>>dist;
        z.v0 =
            a64<<(u8NegDist & 63) | a0>>dist
                | ((uint64_t) (a0<<(u8NegDist & 63)) != 0);
    } else {
        z.v64 = 0;
        z.v0 =
            (dist < 127)
                ? a64>>(dist & 63)
                      | (((a64 & (((uint_fast64_t) 1<<(dist & 63)) - 1)) | a0)
                             != 0)
                : ((a64 | a0) != 0);
    }
    return z;
}

static float32_t softfloat_subMagsF32( uint_fast32_t uiA, uint_fast32_t uiB )
{
    int_fast16_t expA;
    uint_fast32_t sigA;
    int_fast16_t expB;
    uint_fast32_t sigB;
    int_fast16_t expDiff;
    uint_fast32_t uiZ;
    int_fast32_t sigDiff;
    bool signZ;
    int_fast8_t shiftDist;
    int_fast16_t expZ;
    uint_fast32_t sigX, sigY;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expA = expF32UI( uiA );
    sigA = fracF32UI( uiA );
    expB = expF32UI( uiB );
    sigB = fracF32UI( uiB );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expDiff = expA - expB;
    if ( ! expDiff ) {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( expA == 0xFF ) {
            if ( sigA | sigB ) goto propagateNaN;
            raiseFlags( flag_invalid );
            uiZ = defaultNaNF32UI;
            goto uiZ;
        }
        sigDiff = sigA - sigB;
        if ( ! sigDiff ) {
            uiZ =
                packToF32UI(
                    (globalRoundingMode == round_min), 0, 0 );
            goto uiZ;
        }
        if ( expA ) --expA;
        signZ = signF32UI( uiA );
        if ( sigDiff < 0 ) {
            signZ = ! signZ;
            sigDiff = -sigDiff;
        }
        shiftDist = softfloat_countLeadingZeros32( sigDiff ) - 8;
        expZ = expA - shiftDist;
        if ( expZ < 0 ) {
            shiftDist = (int_fast8_t)expA; //fixed type cast
            expZ = 0;
        }
        uiZ = packToF32UI( signZ, expZ, sigDiff<<shiftDist );
        goto uiZ;
    } else {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        signZ = signF32UI( uiA );
        sigA <<= 7;
        sigB <<= 7;
        if ( expDiff < 0 ) {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            signZ = ! signZ;
            if ( expB == 0xFF ) {
                if ( sigB ) goto propagateNaN;
                uiZ = packToF32UI( signZ, 0xFF, 0 );
                goto uiZ;
            }
            expZ = expB - 1;
            sigX = sigB | 0x40000000;
            sigY = sigA + (expA ? 0x40000000 : sigA);
            expDiff = -expDiff;
        } else {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            if ( expA == 0xFF ) {
                if ( sigA ) goto propagateNaN;
                uiZ = uiA;
                goto uiZ;
            }
            expZ = expA - 1;
            sigX = sigA | 0x40000000;
            sigY = sigB + (expB ? 0x40000000 : sigB);
        }
        return
            softfloat_normRoundPackToF32(
                signZ, expZ, sigX - softfloat_shiftRightJam32( sigY, expDiff )
            );
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF32UI( uiA, uiB );
 uiZ:
    return float32_t::fromRaw(uiZ);
}

static float64_t
 softfloat_subMagsF64( uint_fast64_t uiA, uint_fast64_t uiB, bool signZ )
{
    int_fast16_t expA;
    uint_fast64_t sigA;
    int_fast16_t expB;
    uint_fast64_t sigB;
    int_fast16_t expDiff;
    uint_fast64_t uiZ;
    int_fast64_t sigDiff;
    int_fast8_t shiftDist;
    int_fast16_t expZ;
    uint_fast64_t sigZ;

    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expA = expF64UI( uiA );
    sigA = fracF64UI( uiA );
    expB = expF64UI( uiB );
    sigB = fracF64UI( uiB );
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
    expDiff = expA - expB;
    if ( ! expDiff ) {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        if ( expA == 0x7FF ) {
            if ( sigA | sigB ) goto propagateNaN;
            raiseFlags( flag_invalid );
            uiZ = defaultNaNF64UI;
            goto uiZ;
        }
        sigDiff = sigA - sigB;
        if ( ! sigDiff ) {
            uiZ =
                packToF64UI(
                    (globalRoundingMode == round_min), 0, 0 );
            goto uiZ;
        }
        if ( expA ) --expA;
        if ( sigDiff < 0 ) {
            signZ = ! signZ;
            sigDiff = -sigDiff;
        }
        shiftDist = softfloat_countLeadingZeros64( sigDiff ) - 11;
        expZ = expA - shiftDist;
        if ( expZ < 0 ) {
            shiftDist = (int_fast8_t)expA; //fixed type cast
            expZ = 0;
        }
        uiZ = packToF64UI( signZ, expZ, sigDiff<<shiftDist );
        goto uiZ;
    } else {
        /*--------------------------------------------------------------------
        *--------------------------------------------------------------------*/
        sigA <<= 10;
        sigB <<= 10;
        if ( expDiff < 0 ) {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            signZ = ! signZ;
            if ( expB == 0x7FF ) {
                if ( sigB ) goto propagateNaN;
                uiZ = packToF64UI( signZ, 0x7FF, 0 );
                goto uiZ;
            }
            sigA += expA ? UINT64_C( 0x4000000000000000 ) : sigA;
            sigA = softfloat_shiftRightJam64( sigA, -expDiff );
            sigB |= UINT64_C( 0x4000000000000000 );
            expZ = expB;
            sigZ = sigB - sigA;
        } else {
            /*----------------------------------------------------------------
            *----------------------------------------------------------------*/
            if ( expA == 0x7FF ) {
                if ( sigA ) goto propagateNaN;
                uiZ = uiA;
                goto uiZ;
            }
            sigB += expB ? UINT64_C( 0x4000000000000000 ) : sigB;
            sigB = softfloat_shiftRightJam64( sigB, expDiff );
            sigA |= UINT64_C( 0x4000000000000000 );
            expZ = expA;
            sigZ = sigA - sigB;
        }
        return softfloat_normRoundPackToF64( signZ, expZ - 1, sigZ );
    }
    /*------------------------------------------------------------------------
    *------------------------------------------------------------------------*/
 propagateNaN:
    uiZ = softfloat_propagateNaNF64UI( uiA, uiB );
 uiZ:
    return float64_t::fromRaw(uiZ);
}

static float32_t ui32_to_f32( uint32_t a )
{
    if ( ! a ) {
        return float32_t::fromRaw(0);
    }
    if ( a & 0x80000000 ) {
        return softfloat_roundPackToF32( 0, 0x9D, a>>1 | (a & 1) );
    } else {
        return softfloat_normRoundPackToF32( 0, 0x9C, a );
    }
}

static float64_t ui32_to_f64( uint32_t a )
{
    uint_fast64_t uiZ;
    int_fast8_t shiftDist;

    if ( ! a ) {
        uiZ = 0;
    } else {
        shiftDist = softfloat_countLeadingZeros32( a ) + 21;
        uiZ =
            packToF64UI( 0, 0x432 - shiftDist, (uint_fast64_t) a<<shiftDist );
    }
    return float64_t::fromRaw(uiZ);
}

static float32_t ui64_to_f32( uint64_t a )
{
    int_fast8_t shiftDist;
    uint_fast32_t sig;

    shiftDist = softfloat_countLeadingZeros64( a ) - 40;
    if ( 0 <= shiftDist ) {
        return float32_t::fromRaw(a ? packToF32UI(0, 0x95 - shiftDist, (uint_fast32_t) a<<shiftDist ) : 0);
    } else {
        shiftDist += 7;
        sig =
            (shiftDist < 0) ? (uint_fast32_t) softfloat_shortShiftRightJam64( a, -shiftDist ) //fixed warning on type cast
                : (uint_fast32_t) a<<shiftDist;
        return softfloat_roundPackToF32( 0, 0x9C - shiftDist, sig );
    }
}

static float64_t ui64_to_f64( uint64_t a )
{
    if ( ! a ) {
        return float64_t::fromRaw(0);
    }
    if ( a & UINT64_C( 0x8000000000000000 ) ) {
        return
            softfloat_roundPackToF64(
                0, 0x43D, softfloat_shortShiftRightJam64( a, 1 ) );
    } else {
        return softfloat_normRoundPackToF64( 0, 0x43C, a );
    }
}

/*----------------------------------------------------------------------------
| Ported from OpenCV.
*----------------------------------------------------------------------------*/

////////////////////////////////////// EXP /////////////////////////////////////

#define EXPTAB_SCALE 6
#define EXPTAB_MASK  ((1 << EXPTAB_SCALE) - 1)

// .9670371139572337719125840413672004409288e-2
static const softdouble EXPPOLY_32F_A0 = float64_t::fromRaw(0x3f83ce0f3e46f431);

static const uint64_t expTab[] = {
    0x3ff0000000000000, // 1.000000
    0x3ff02c9a3e778061, // 1.010889
    0x3ff059b0d3158574, // 1.021897
    0x3ff0874518759bc8, // 1.033025
    0x3ff0b5586cf9890f, // 1.044274
    0x3ff0e3ec32d3d1a2, // 1.055645
    0x3ff11301d0125b51, // 1.067140
    0x3ff1429aaea92de0, // 1.078761
    0x3ff172b83c7d517b, // 1.090508
    0x3ff1a35beb6fcb75, // 1.102383
    0x3ff1d4873168b9aa, // 1.114387
    0x3ff2063b88628cd6, // 1.126522
    0x3ff2387a6e756238, // 1.138789
    0x3ff26b4565e27cdd, // 1.151189
    0x3ff29e9df51fdee1, // 1.163725
    0x3ff2d285a6e4030b, // 1.176397
    0x3ff306fe0a31b715, // 1.189207
    0x3ff33c08b26416ff, // 1.202157
    0x3ff371a7373aa9cb, // 1.215247
    0x3ff3a7db34e59ff7, // 1.228481
    0x3ff3dea64c123422, // 1.241858
    0x3ff4160a21f72e2a, // 1.255381
    0x3ff44e086061892d, // 1.269051
    0x3ff486a2b5c13cd0, // 1.282870
    0x3ff4bfdad5362a27, // 1.296840
    0x3ff4f9b2769d2ca7, // 1.310961
    0x3ff5342b569d4f82, // 1.325237
    0x3ff56f4736b527da, // 1.339668
    0x3ff5ab07dd485429, // 1.354256
    0x3ff5e76f15ad2148, // 1.369002
    0x3ff6247eb03a5585, // 1.383910
    0x3ff6623882552225, // 1.398980
    0x3ff6a09e667f3bcd, // 1.414214
    0x3ff6dfb23c651a2f, // 1.429613
    0x3ff71f75e8ec5f74, // 1.445181
    0x3ff75feb564267c9, // 1.460918
    0x3ff7a11473eb0187, // 1.476826
    0x3ff7e2f336cf4e62, // 1.492908
    0x3ff82589994cce13, // 1.509164
    0x3ff868d99b4492ed, // 1.525598
    0x3ff8ace5422aa0db, // 1.542211
    0x3ff8f1ae99157736, // 1.559004
    0x3ff93737b0cdc5e5, // 1.575981
    0x3ff97d829fde4e50, // 1.593142
    0x3ff9c49182a3f090, // 1.610490
    0x3ffa0c667b5de565, // 1.628027
    0x3ffa5503b23e255d, // 1.645755
    0x3ffa9e6b5579fdbf, // 1.663677
    0x3ffae89f995ad3ad, // 1.681793
    0x3ffb33a2b84f15fb, // 1.700106
    0x3ffb7f76f2fb5e47, // 1.718619
    0x3ffbcc1e904bc1d2, // 1.737334
    0x3ffc199bdd85529c, // 1.756252
    0x3ffc67f12e57d14b, // 1.775376
    0x3ffcb720dcef9069, // 1.794709
    0x3ffd072d4a07897c, // 1.814252
    0x3ffd5818dcfba487, // 1.834008
    0x3ffda9e603db3285, // 1.853979
    0x3ffdfc97337b9b5f, // 1.874168
    0x3ffe502ee78b3ff6, // 1.894576
    0x3ffea4afa2a490da, // 1.915207
    0x3ffefa1bee615a27, // 1.936062
    0x3fff50765b6e4540, // 1.957144
    0x3fffa7c1819e90d8, // 1.978456
};

// 1 / ln(2) * (1 << EXPTAB_SCALE) == 1.4426950408889634073599246810019 * (1 << EXPTAB_SCALE)
static const float64_t exp_prescale = float64_t::fromRaw(0x3ff71547652b82fe) * float64_t(1 << EXPTAB_SCALE);
static const float64_t exp_postscale = float64_t::one()/float64_t(1 << EXPTAB_SCALE);
static const float64_t exp_max_val(3000*(1 << EXPTAB_SCALE)); // log10(DBL_MAX) < 3000

static float32_t f32_exp( float32_t x)
{
    //special cases
    if(x.isNaN()) return float32_t::nan();
    if(x.isInf()) return (x == float32_t::inf()) ? x : float32_t::zero();

    static const float64_t
        A4 = float64_t::one() / EXPPOLY_32F_A0,
        A3 = float64_t::fromRaw(0x3fe62e42fef9277b) / EXPPOLY_32F_A0, // .6931471805521448196800669615864773144641 / EXPPOLY_32F_A0,
        A2 = float64_t::fromRaw(0x3fcebfbe081585e7) / EXPPOLY_32F_A0, // .2402265109513301490103372422686535526573 / EXPPOLY_32F_A0,
        A1 = float64_t::fromRaw(0x3fac6af0d93cf576) / EXPPOLY_32F_A0; // .5550339366753125211915322047004666939128e-1 / EXPPOLY_32F_A0;

    float64_t x0;
    if(expF32UI(x.v) > 127 + 10)
        x0 = signF32UI(x.v) ? -exp_max_val : exp_max_val;
    else
        x0 = f32_to_f64(x) * exp_prescale;

    int val0 = f64_to_i32(x0, round_near_even, false);
    int t = (val0 >> EXPTAB_SCALE) + 1023;
    t = t < 0 ? 0 : (t > 2047 ? 2047 : t);
    float64_t buf; buf.v = packToF64UI(0, t, 0);

    x0 = (x0 - f64_roundToInt(x0, round_near_even, false)) * exp_postscale;

    return (buf * EXPPOLY_32F_A0 * float64_t::fromRaw(expTab[val0 & EXPTAB_MASK]) * ((((x0 + A1)*x0 + A2)*x0 + A3)*x0 + A4));
}

static float64_t f64_exp(float64_t x)
{
    //special cases
    if(x.isNaN()) return float64_t::nan();
    if(x.isInf()) return (x == float64_t::inf()) ? x : float64_t::zero();

    static const float64_t
        A5 = float64_t::one() / EXPPOLY_32F_A0,
        A4 = float64_t::fromRaw(0x3fe62e42fefa39f1) / EXPPOLY_32F_A0, // .69314718055994546743029643825322 / EXPPOLY_32F_A0
        A3 = float64_t::fromRaw(0x3fcebfbdff82a45a) / EXPPOLY_32F_A0, // .24022650695886477918181338054308 / EXPPOLY_32F_A0
        A2 = float64_t::fromRaw(0x3fac6b08d81fec75) / EXPPOLY_32F_A0, // .55504108793649567998466049042729e-1 / EXPPOLY_32F_A0
        A1 = float64_t::fromRaw(0x3f83b2a72b4f3cd3) / EXPPOLY_32F_A0, // .96180973140732918010002372686186e-2 / EXPPOLY_32F_A0
        A0 = float64_t::fromRaw(0x3f55e7aa1566c2a4) / EXPPOLY_32F_A0; // .13369713757180123244806654839424e-2 / EXPPOLY_32F_A0

    float64_t x0;
    if(expF64UI(x.v) > 1023 + 10)
        x0 = signF64UI(x.v) ? -exp_max_val : exp_max_val;
    else
        x0 = x * exp_prescale;

    int val0 = cvRound(x0);
    int t = (val0 >> EXPTAB_SCALE) + 1023;
    t = t < 0 ? 0 : (t > 2047 ? 2047 : t);
    float64_t buf; buf.v = packToF64UI(0, t, 0);

    x0 = (x0 - f64_roundToInt(x0, round_near_even, false)) * exp_postscale;

    return buf * EXPPOLY_32F_A0 * float64_t::fromRaw(expTab[val0 & EXPTAB_MASK]) * (((((A0*x0 + A1)*x0 + A2)*x0 + A3)*x0 + A4)*x0 + A5);
}

#undef EXPTAB_SCALE
#undef EXPTAB_MASK
#undef EXPPOLY_32F_A0

/////////////////////////////////////////// LOG ///////////////////////////////////////

#define LOGTAB_SCALE    8

static const uint64_t CV_DECL_ALIGNED(16) icvLogTab[] = {
    0, 0x3ff0000000000000, // 0.000000, 1.000000
    0x3f6ff00aa2b10bc0, 0x3fefe01fe01fe020, // 0.003899, 0.996109
    0x3f7fe02a6b106788, 0x3fefc07f01fc07f0, // 0.007782, 0.992248
    0x3f87dc475f810a76, 0x3fefa11caa01fa12, // 0.011651, 0.988417
    0x3f8fc0a8b0fc03e3, 0x3fef81f81f81f820, // 0.015504, 0.984615
    0x3f93cea44346a574, 0x3fef6310aca0dbb5, // 0.019343, 0.980843
    0x3f97b91b07d5b11a, 0x3fef44659e4a4271, // 0.023167, 0.977099
    0x3f9b9fc027af9197, 0x3fef25f644230ab5, // 0.026977, 0.973384
    0x3f9f829b0e783300, 0x3fef07c1f07c1f08, // 0.030772, 0.969697
    0x3fa1b0d98923d97f, 0x3feee9c7f8458e02, // 0.034552, 0.966038
    0x3fa39e87b9febd5f, 0x3feecc07b301ecc0, // 0.038319, 0.962406
    0x3fa58a5bafc8e4d4, 0x3feeae807aba01eb, // 0.042071, 0.958801
    0x3fa77458f632dcfc, 0x3fee9131abf0b767, // 0.045810, 0.955224
    0x3fa95c830ec8e3eb, 0x3fee741aa59750e4, // 0.049534, 0.951673
    0x3fab42dd711971be, 0x3fee573ac901e574, // 0.053245, 0.948148
    0x3fad276b8adb0b52, 0x3fee3a9179dc1a73, // 0.056941, 0.944649
    0x3faf0a30c01162a6, 0x3fee1e1e1e1e1e1e, // 0.060625, 0.941176
    0x3fb075983598e471, 0x3fee01e01e01e01e, // 0.064294, 0.937729
    0x3fb16536eea37ae0, 0x3fede5d6e3f8868a, // 0.067951, 0.934307
    0x3fb253f62f0a1416, 0x3fedca01dca01dca, // 0.071594, 0.930909
    0x3fb341d7961bd1d0, 0x3fedae6076b981db, // 0.075223, 0.927536
    0x3fb42edcbea646f0, 0x3fed92f2231e7f8a, // 0.078840, 0.924188
    0x3fb51b073f06183f, 0x3fed77b654b82c34, // 0.082444, 0.920863
    0x3fb60658a93750c3, 0x3fed5cac807572b2, // 0.086034, 0.917563
    0x3fb6f0d28ae56b4b, 0x3fed41d41d41d41d, // 0.089612, 0.914286
    0x3fb7da766d7b12cc, 0x3fed272ca3fc5b1a, // 0.093177, 0.911032
    0x3fb8c345d6319b20, 0x3fed0cb58f6ec074, // 0.096730, 0.907801
    0x3fb9ab42462033ac, 0x3fecf26e5c44bfc6, // 0.100269, 0.904594
    0x3fba926d3a4ad563, 0x3fecd85689039b0b, // 0.103797, 0.901408
    0x3fbb78c82bb0eda1, 0x3fecbe6d9601cbe7, // 0.107312, 0.898246
    0x3fbc5e548f5bc743, 0x3feca4b3055ee191, // 0.110814, 0.895105
    0x3fbd4313d66cb35d, 0x3fec8b265afb8a42, // 0.114305, 0.891986
    0x3fbe27076e2af2e5, 0x3fec71c71c71c71c, // 0.117783, 0.888889
    0x3fbf0a30c01162a6, 0x3fec5894d10d4986, // 0.121249, 0.885813
    0x3fbfec9131dbeaba, 0x3fec3f8f01c3f8f0, // 0.124703, 0.882759
    0x3fc0671512ca596e, 0x3fec26b5392ea01c, // 0.128146, 0.879725
    0x3fc0d77e7cd08e59, 0x3fec0e070381c0e0, // 0.131576, 0.876712
    0x3fc14785846742ac, 0x3febf583ee868d8b, // 0.134995, 0.873720
    0x3fc1b72ad52f67a0, 0x3febdd2b899406f7, // 0.138402, 0.870748
    0x3fc2266f190a5acb, 0x3febc4fd65883e7b, // 0.141798, 0.867797
    0x3fc29552f81ff523, 0x3febacf914c1bad0, // 0.145182, 0.864865
    0x3fc303d718e47fd2, 0x3feb951e2b18ff23, // 0.148555, 0.861953
    0x3fc371fc201e8f74, 0x3feb7d6c3dda338b, // 0.151916, 0.859060
    0x3fc3dfc2b0ecc629, 0x3feb65e2e3beee05, // 0.155266, 0.856187
    0x3fc44d2b6ccb7d1e, 0x3feb4e81b4e81b4f, // 0.158605, 0.853333
    0x3fc4ba36f39a55e5, 0x3feb37484ad806ce, // 0.161933, 0.850498
    0x3fc526e5e3a1b437, 0x3feb2036406c80d9, // 0.165250, 0.847682
    0x3fc59338d9982085, 0x3feb094b31d922a4, // 0.168555, 0.844884
    0x3fc5ff3070a793d3, 0x3feaf286bca1af28, // 0.171850, 0.842105
    0x3fc66acd4272ad50, 0x3feadbe87f94905e, // 0.175134, 0.839344
    0x3fc6d60fe719d21c, 0x3feac5701ac5701b, // 0.178408, 0.836601
    0x3fc740f8f54037a4, 0x3feaaf1d2f87ebfd, // 0.181670, 0.833876
    0x3fc7ab890210d909, 0x3fea98ef606a63be, // 0.184922, 0.831169
    0x3fc815c0a14357ea, 0x3fea82e65130e159, // 0.188164, 0.828479
    0x3fc87fa06520c910, 0x3fea6d01a6d01a6d, // 0.191395, 0.825806
    0x3fc8e928de886d40, 0x3fea574107688a4a, // 0.194615, 0.823151
    0x3fc9525a9cf456b4, 0x3fea41a41a41a41a, // 0.197826, 0.820513
    0x3fc9bb362e7dfb83, 0x3fea2c2a87c51ca0, // 0.201026, 0.817891
    0x3fca23bc1fe2b563, 0x3fea16d3f97a4b02, // 0.204216, 0.815287
    0x3fca8becfc882f18, 0x3fea01a01a01a01a, // 0.207395, 0.812698
    0x3fcaf3c94e80bff2, 0x3fe9ec8e951033d9, // 0.210565, 0.810127
    0x3fcb5b519e8fb5a4, 0x3fe9d79f176b682d, // 0.213724, 0.807571
    0x3fcbc286742d8cd6, 0x3fe9c2d14ee4a102, // 0.216874, 0.805031
    0x3fcc2968558c18c0, 0x3fe9ae24ea5510da, // 0.220014, 0.802508
    0x3fcc8ff7c79a9a21, 0x3fe999999999999a, // 0.223144, 0.800000
    0x3fccf6354e09c5dc, 0x3fe9852f0d8ec0ff, // 0.226264, 0.797508
    0x3fcd5c216b4fbb91, 0x3fe970e4f80cb872, // 0.229374, 0.795031
    0x3fcdc1bca0abec7d, 0x3fe95cbb0be377ae, // 0.232475, 0.792570
    0x3fce27076e2af2e5, 0x3fe948b0fcd6e9e0, // 0.235566, 0.790123
    0x3fce8c0252aa5a5f, 0x3fe934c67f9b2ce6, // 0.238648, 0.787692
    0x3fcef0adcbdc5936, 0x3fe920fb49d0e229, // 0.241720, 0.785276
    0x3fcf550a564b7b37, 0x3fe90d4f120190d5, // 0.244783, 0.782875
    0x3fcfb9186d5e3e2a, 0x3fe8f9c18f9c18fa, // 0.247836, 0.780488
    0x3fd00e6c45ad501c, 0x3fe8e6527af1373f, // 0.250880, 0.778116
    0x3fd0402594b4d040, 0x3fe8d3018d3018d3, // 0.253915, 0.775758
    0x3fd071b85fcd590d, 0x3fe8bfce8062ff3a, // 0.256941, 0.773414
    0x3fd0a324e27390e3, 0x3fe8acb90f6bf3aa, // 0.259958, 0.771084
    0x3fd0d46b579ab74b, 0x3fe899c0f601899c, // 0.262965, 0.768769
    0x3fd1058bf9ae4ad5, 0x3fe886e5f0abb04a, // 0.265964, 0.766467
    0x3fd136870293a8b0, 0x3fe87427bcc092b9, // 0.268953, 0.764179
    0x3fd1675cababa60e, 0x3fe8618618618618, // 0.271934, 0.761905
    0x3fd1980d2dd4236f, 0x3fe84f00c2780614, // 0.274905, 0.759644
    0x3fd1c898c16999fa, 0x3fe83c977ab2bedd, // 0.277868, 0.757396
    0x3fd1f8ff9e48a2f2, 0x3fe82a4a0182a4a0, // 0.280823, 0.755162
    0x3fd22941fbcf7965, 0x3fe8181818181818, // 0.283768, 0.752941
    0x3fd2596010df7639, 0x3fe8060180601806, // 0.286705, 0.750733
    0x3fd2895a13de86a3, 0x3fe7f405fd017f40, // 0.289633, 0.748538
    0x3fd2b9303ab89d24, 0x3fe7e225515a4f1d, // 0.292553, 0.746356
    0x3fd2e8e2bae11d30, 0x3fe7d05f417d05f4, // 0.295464, 0.744186
    0x3fd31871c9544184, 0x3fe7beb3922e017c, // 0.298367, 0.742029
    0x3fd347dd9a987d54, 0x3fe7ad2208e0ecc3, // 0.301261, 0.739884
    0x3fd3772662bfd85a, 0x3fe79baa6bb6398b, // 0.304147, 0.737752
    0x3fd3a64c556945e9, 0x3fe78a4c8178a4c8, // 0.307025, 0.735632
    0x3fd3d54fa5c1f70f, 0x3fe77908119ac60d, // 0.309894, 0.733524
    0x3fd404308686a7e3, 0x3fe767dce434a9b1, // 0.312756, 0.731429
    0x3fd432ef2a04e813, 0x3fe756cac201756d, // 0.315609, 0.729345
    0x3fd4618bc21c5ec2, 0x3fe745d1745d1746, // 0.318454, 0.727273
    0x3fd49006804009d0, 0x3fe734f0c541fe8d, // 0.321291, 0.725212
    0x3fd4be5f957778a0, 0x3fe724287f46debc, // 0.324119, 0.723164
    0x3fd4ec9732600269, 0x3fe713786d9c7c09, // 0.326940, 0.721127
    0x3fd51aad872df82d, 0x3fe702e05c0b8170, // 0.329753, 0.719101
    0x3fd548a2c3add262, 0x3fe6f26016f26017, // 0.332558, 0.717087
    0x3fd5767717455a6c, 0x3fe6e1f76b4337c7, // 0.335356, 0.715084
    0x3fd5a42ab0f4cfe1, 0x3fe6d1a62681c861, // 0.338145, 0.713092
    0x3fd5d1bdbf5809ca, 0x3fe6c16c16c16c17, // 0.340927, 0.711111
    0x3fd5ff3070a793d3, 0x3fe6b1490aa31a3d, // 0.343701, 0.709141
    0x3fd62c82f2b9c795, 0x3fe6a13cd1537290, // 0.346467, 0.707182
    0x3fd659b57303e1f2, 0x3fe691473a88d0c0, // 0.349225, 0.705234
    0x3fd686c81e9b14ae, 0x3fe6816816816817, // 0.351976, 0.703297
    0x3fd6b3bb2235943d, 0x3fe6719f3601671a, // 0.354720, 0.701370
    0x3fd6e08eaa2ba1e3, 0x3fe661ec6a5122f9, // 0.357456, 0.699454
    0x3fd70d42e2789235, 0x3fe6524f853b4aa3, // 0.360184, 0.697548
    0x3fd739d7f6bbd006, 0x3fe642c8590b2164, // 0.362905, 0.695652
    0x3fd7664e1239dbce, 0x3fe63356b88ac0de, // 0.365619, 0.693767
    0x3fd792a55fdd47a2, 0x3fe623fa77016240, // 0.368326, 0.691892
    0x3fd7bede0a37afbf, 0x3fe614b36831ae94, // 0.371025, 0.690027
    0x3fd7eaf83b82afc3, 0x3fe6058160581606, // 0.373716, 0.688172
    0x3fd816f41da0d495, 0x3fe5f66434292dfc, // 0.376401, 0.686327
    0x3fd842d1da1e8b17, 0x3fe5e75bb8d015e7, // 0.379078, 0.684492
    0x3fd86e919a330ba0, 0x3fe5d867c3ece2a5, // 0.381749, 0.682667
    0x3fd89a3386c1425a, 0x3fe5c9882b931057, // 0.384412, 0.680851
    0x3fd8c5b7c858b48a, 0x3fe5babcc647fa91, // 0.387068, 0.679045
    0x3fd8f11e873662c7, 0x3fe5ac056b015ac0, // 0.389717, 0.677249
    0x3fd91c67eb45a83d, 0x3fe59d61f123ccaa, // 0.392359, 0.675462
    0x3fd947941c2116fa, 0x3fe58ed2308158ed, // 0.394994, 0.673684
    0x3fd972a341135158, 0x3fe5805601580560, // 0.397622, 0.671916
    0x3fd99d958117e08a, 0x3fe571ed3c506b3a, // 0.400243, 0.670157
    0x3fd9c86b02dc0862, 0x3fe56397ba7c52e2, // 0.402858, 0.668407
    0x3fd9f323ecbf984b, 0x3fe5555555555555, // 0.405465, 0.666667
    0x3fda1dc064d5b995, 0x3fe54725e6bb82fe, // 0.408066, 0.664935
    0x3fda484090e5bb0a, 0x3fe5390948f40feb, // 0.410660, 0.663212
    0x3fda72a4966bd9ea, 0x3fe52aff56a8054b, // 0.413247, 0.661499
    0x3fda9cec9a9a0849, 0x3fe51d07eae2f815, // 0.415828, 0.659794
    0x3fdac718c258b0e4, 0x3fe50f22e111c4c5, // 0.418402, 0.658098
    0x3fdaf1293247786b, 0x3fe5015015015015, // 0.420969, 0.656410
    0x3fdb1b1e0ebdfc5b, 0x3fe4f38f62dd4c9b, // 0.423530, 0.654731
    0x3fdb44f77bcc8f62, 0x3fe4e5e0a72f0539, // 0.426084, 0.653061
    0x3fdb6eb59d3cf35d, 0x3fe4d843bedc2c4c, // 0.428632, 0.651399
    0x3fdb9858969310fb, 0x3fe4cab88725af6e, // 0.431173, 0.649746
    0x3fdbc1e08b0dad0a, 0x3fe4bd3edda68fe1, // 0.433708, 0.648101
    0x3fdbeb4d9da71b7b, 0x3fe4afd6a052bf5b, // 0.436237, 0.646465
    0x3fdc149ff115f026, 0x3fe4a27fad76014a, // 0.438759, 0.644836
    0x3fdc3dd7a7cdad4d, 0x3fe49539e3b2d067, // 0.441275, 0.643216
    0x3fdc66f4e3ff6ff7, 0x3fe4880522014880, // 0.443784, 0.641604
    0x3fdc8ff7c79a9a21, 0x3fe47ae147ae147b, // 0.446287, 0.640000
    0x3fdcb8e0744d7ac9, 0x3fe46dce34596066, // 0.448784, 0.638404
    0x3fdce1af0b85f3eb, 0x3fe460cbc7f5cf9a, // 0.451275, 0.636816
    0x3fdd0a63ae721e64, 0x3fe453d9e2c776ca, // 0.453759, 0.635236
    0x3fdd32fe7e00ebd5, 0x3fe446f86562d9fb, // 0.456237, 0.633663
    0x3fdd5b7f9ae2c683, 0x3fe43a2730abee4d, // 0.458710, 0.632099
    0x3fdd83e7258a2f3e, 0x3fe42d6625d51f87, // 0.461176, 0.630542
    0x3fddac353e2c5954, 0x3fe420b5265e5951, // 0.463636, 0.628993
    0x3fddd46a04c1c4a0, 0x3fe4141414141414, // 0.466090, 0.627451
    0x3fddfc859906d5b5, 0x3fe40782d10e6566, // 0.468538, 0.625917
    0x3fde24881a7c6c26, 0x3fe3fb013fb013fb, // 0.470980, 0.624390
    0x3fde4c71a8687704, 0x3fe3ee8f42a5af07, // 0.473416, 0.622871
    0x3fde744261d68787, 0x3fe3e22cbce4a902, // 0.475846, 0.621359
    0x3fde9bfa659861f5, 0x3fe3d5d991aa75c6, // 0.478270, 0.619855
    0x3fdec399d2468cc0, 0x3fe3c995a47babe7, // 0.480689, 0.618357
    0x3fdeeb20c640ddf4, 0x3fe3bd60d9232955, // 0.483101, 0.616867
    0x3fdf128f5faf06ec, 0x3fe3b13b13b13b14, // 0.485508, 0.615385
    0x3fdf39e5bc811e5b, 0x3fe3a524387ac822, // 0.487909, 0.613909
    0x3fdf6123fa7028ac, 0x3fe3991c2c187f63, // 0.490304, 0.612440
    0x3fdf884a36fe9ec2, 0x3fe38d22d366088e, // 0.492693, 0.610979
    0x3fdfaf588f78f31e, 0x3fe3813813813814, // 0.495077, 0.609524
    0x3fdfd64f20f61571, 0x3fe3755bd1c945ee, // 0.497455, 0.608076
    0x3fdffd2e0857f498, 0x3fe3698df3de0748, // 0.499828, 0.606635
    0x3fe011fab125ff8a, 0x3fe35dce5f9f2af8, // 0.502195, 0.605201
    0x3fe02552a5a5d0fe, 0x3fe3521cfb2b78c1, // 0.504556, 0.603774
    0x3fe0389eefce633b, 0x3fe34679ace01346, // 0.506912, 0.602353
    0x3fe04bdf9da926d2, 0x3fe33ae45b57bcb2, // 0.509262, 0.600939
    0x3fe05f14bd26459c, 0x3fe32f5ced6a1dfa, // 0.511607, 0.599532
    0x3fe0723e5c1cdf40, 0x3fe323e34a2b10bf, // 0.513946, 0.598131
    0x3fe0855c884b450e, 0x3fe3187758e9ebb6, // 0.516279, 0.596737
    0x3fe0986f4f573520, 0x3fe30d190130d190, // 0.518608, 0.595349
    0x3fe0ab76bece14d1, 0x3fe301c82ac40260, // 0.520931, 0.593968
    0x3fe0be72e4252a82, 0x3fe2f684bda12f68, // 0.523248, 0.592593
    0x3fe0d163ccb9d6b7, 0x3fe2eb4ea1fed14b, // 0.525560, 0.591224
    0x3fe0e44985d1cc8b, 0x3fe2e025c04b8097, // 0.527867, 0.589862
    0x3fe0f7241c9b497d, 0x3fe2d50a012d50a0, // 0.530169, 0.588506
    0x3fe109f39e2d4c96, 0x3fe2c9fb4d812ca0, // 0.532465, 0.587156
    0x3fe11cb81787ccf8, 0x3fe2bef98e5a3711, // 0.534756, 0.585812
    0x3fe12f719593efbc, 0x3fe2b404ad012b40, // 0.537041, 0.584475
    0x3fe1422025243d44, 0x3fe2a91c92f3c105, // 0.539322, 0.583144
    0x3fe154c3d2f4d5e9, 0x3fe29e4129e4129e, // 0.541597, 0.581818
    0x3fe1675cababa60e, 0x3fe293725bb804a5, // 0.543867, 0.580499
    0x3fe179eabbd899a0, 0x3fe288b01288b013, // 0.546132, 0.579186
    0x3fe18c6e0ff5cf06, 0x3fe27dfa38a1ce4d, // 0.548392, 0.577878
    0x3fe19ee6b467c96e, 0x3fe27350b8812735, // 0.550647, 0.576577
    0x3fe1b154b57da29e, 0x3fe268b37cd60127, // 0.552897, 0.575281
    0x3fe1c3b81f713c24, 0x3fe25e22708092f1, // 0.555142, 0.573991
    0x3fe1d610fe677003, 0x3fe2539d7e9177b2, // 0.557381, 0.572707
    0x3fe1e85f5e7040d0, 0x3fe2492492492492, // 0.559616, 0.571429
    0x3fe1faa34b87094c, 0x3fe23eb79717605b, // 0.561845, 0.570156
    0x3fe20cdcd192ab6d, 0x3fe23456789abcdf, // 0.564070, 0.568889
    0x3fe21f0bfc65beeb, 0x3fe22a0122a0122a, // 0.566290, 0.567627
    0x3fe23130d7bebf42, 0x3fe21fb78121fb78, // 0.568505, 0.566372
    0x3fe2434b6f483933, 0x3fe21579804855e6, // 0.570715, 0.565121
    0x3fe2555bce98f7cb, 0x3fe20b470c67c0d9, // 0.572920, 0.563877
    0x3fe26762013430df, 0x3fe2012012012012, // 0.575120, 0.562637
    0x3fe2795e1289b11a, 0x3fe1f7047dc11f70, // 0.577315, 0.561404
    0x3fe28b500df60782, 0x3fe1ecf43c7fb84c, // 0.579506, 0.560175
    0x3fe29d37fec2b08a, 0x3fe1e2ef3b3fb874, // 0.581692, 0.558952
    0x3fe2af15f02640ad, 0x3fe1d8f5672e4abd, // 0.583873, 0.557734
    0x3fe2c0e9ed448e8b, 0x3fe1cf06ada2811d, // 0.586049, 0.556522
    0x3fe2d2b4012edc9d, 0x3fe1c522fc1ce059, // 0.588221, 0.555315
    0x3fe2e47436e40268, 0x3fe1bb4a4046ed29, // 0.590387, 0.554113
    0x3fe2f62a99509546, 0x3fe1b17c67f2bae3, // 0.592550, 0.552916
    0x3fe307d7334f10be, 0x3fe1a7b9611a7b96, // 0.594707, 0.551724
    0x3fe3197a0fa7fe6a, 0x3fe19e0119e0119e, // 0.596860, 0.550538
    0x3fe32b1339121d71, 0x3fe19453808ca29c, // 0.599008, 0.549356
    0x3fe33ca2ba328994, 0x3fe18ab083902bdb, // 0.601152, 0.548180
    0x3fe34e289d9ce1d3, 0x3fe1811811811812, // 0.603291, 0.547009
    0x3fe35fa4edd36ea0, 0x3fe1778a191bd684, // 0.605425, 0.545842
    0x3fe37117b54747b5, 0x3fe16e0689427379, // 0.607555, 0.544681
    0x3fe38280fe58797e, 0x3fe1648d50fc3201, // 0.609681, 0.543524
    0x3fe393e0d3562a19, 0x3fe15b1e5f75270d, // 0.611802, 0.542373
    0x3fe3a5373e7ebdf9, 0x3fe151b9a3fdd5c9, // 0.613918, 0.541226
    0x3fe3b68449fffc22, 0x3fe1485f0e0acd3b, // 0.616030, 0.540084
    0x3fe3c7c7fff73205, 0x3fe13f0e8d344724, // 0.618137, 0.538947
    0x3fe3d9026a7156fa, 0x3fe135c81135c811, // 0.620240, 0.537815
    0x3fe3ea33936b2f5b, 0x3fe12c8b89edc0ac, // 0.622339, 0.536688
    0x3fe3fb5b84d16f42, 0x3fe12358e75d3033, // 0.624433, 0.535565
    0x3fe40c7a4880dce9, 0x3fe11a3019a74826, // 0.626523, 0.534447
    0x3fe41d8fe84672ae, 0x3fe1111111111111, // 0.628609, 0.533333
    0x3fe42e9c6ddf80bf, 0x3fe107fbbe011080, // 0.630690, 0.532225
    0x3fe43f9fe2f9ce67, 0x3fe0fef010fef011, // 0.632767, 0.531120
    0x3fe4509a5133bb0a, 0x3fe0f5edfab325a2, // 0.634839, 0.530021
    0x3fe4618bc21c5ec2, 0x3fe0ecf56be69c90, // 0.636907, 0.528926
    0x3fe472743f33aaad, 0x3fe0e40655826011, // 0.638971, 0.527835
    0x3fe48353d1ea88df, 0x3fe0db20a88f4696, // 0.641031, 0.526749
    0x3fe4942a83a2fc07, 0x3fe0d24456359e3a, // 0.643087, 0.525667
    0x3fe4a4f85db03ebb, 0x3fe0c9714fbcda3b, // 0.645138, 0.524590
    0x3fe4b5bd6956e273, 0x3fe0c0a7868b4171, // 0.647185, 0.523517
    0x3fe4c679afccee39, 0x3fe0b7e6ec259dc8, // 0.649228, 0.522449
    0x3fe4d72d3a39fd00, 0x3fe0af2f722eecb5, // 0.651267, 0.521385
    0x3fe4e7d811b75bb0, 0x3fe0a6810a6810a7, // 0.653301, 0.520325
    0x3fe4f87a3f5026e8, 0x3fe09ddba6af8360, // 0.655332, 0.519270
    0x3fe50913cc01686b, 0x3fe0953f39010954, // 0.657358, 0.518219
    0x3fe519a4c0ba3446, 0x3fe08cabb37565e2, // 0.659380, 0.517172
    0x3fe52a2d265bc5aa, 0x3fe0842108421084, // 0.661398, 0.516129
    0x3fe53aad05b99b7c, 0x3fe07b9f29b8eae2, // 0.663413, 0.515091
    0x3fe54b2467999497, 0x3fe073260a47f7c6, // 0.665423, 0.514056
    0x3fe55b9354b40bcd, 0x3fe06ab59c7912fb, // 0.667429, 0.513026
    0x3fe56bf9d5b3f399, 0x3fe0624dd2f1a9fc, // 0.669431, 0.512000
    0x3fe57c57f336f190, 0x3fe059eea0727586, // 0.671429, 0.510978
    0x3fe58cadb5cd7989, 0x3fe05197f7d73404, // 0.673423, 0.509960
    0x3fe59cfb25fae87d, 0x3fe04949cc1664c5, // 0.675413, 0.508946
    0x3fe5ad404c359f2c, 0x3fe0410410410410, // 0.677399, 0.507937
    0x3fe5bd7d30e71c73, 0x3fe038c6b78247fc, // 0.679381, 0.506931
    0x3fe5cdb1dc6c1764, 0x3fe03091b51f5e1a, // 0.681359, 0.505929
    0x3fe5ddde57149923, 0x3fe02864fc7729e9, // 0.683334, 0.504931
    0x3fe5ee02a9241675, 0x3fe0204081020408, // 0.685304, 0.503937
    0x3fe5fe1edad18918, 0x3fe0182436517a37, // 0.687271, 0.502947
    0x3fe60e32f44788d8, 0x3fe0101010101010, // 0.689233, 0.501961
    0x3fe62e42fefa39ef, 0x3fe0000000000000, // 0.693147, 0.500000
};

// 0.69314718055994530941723212145818
static const float64_t ln_2 = float64_t::fromRaw(0x3fe62e42fefa39ef);

static float32_t f32_log(float32_t x)
{
    //special cases
    if(x.isNaN() || x < float32_t::zero()) return float32_t::nan();
    if(x == float32_t::zero()) return -float32_t::inf();

    //first 8 bits of mantissa
    int h0 = (x.v >> (23 - LOGTAB_SCALE)) & ((1 << LOGTAB_SCALE) - 1);
    //buf == 0.00000000_the_rest_mantissa_bits
    float64_t buf; buf.v = packToF64UI(0, 1023, ((uint64_t)x.v << 29) & ((1LL << (52 - LOGTAB_SCALE)) - 1));
    buf -= float64_t::one();

    float64_t tab0 = float64_t::fromRaw(icvLogTab[2*h0]);
    float64_t tab1 = float64_t::fromRaw(icvLogTab[2*h0+1]);

    float64_t x0 = buf * tab1;
    //if last elements of icvLogTab
    if(h0 == 255) x0 += float64_t(-float64_t::one() / float64_t(512));

    float64_t y0 = ln_2 * float64_t(expF32UI(x.v) - 127) + tab0 + x0*x0*x0/float64_t(3) - x0*x0/float64_t(2) + x0;

    return y0;
}

static float64_t f64_log(float64_t x)
{
    //special cases
    if(x.isNaN() || x < float64_t::zero()) return float64_t::nan();
    if(x == float64_t::zero()) return -float64_t::inf();

    static const float64_t
    A7(1),
    A6(-float64_t::one() / float64_t(2)),
    A5( float64_t::one() / float64_t(3)),
    A4(-float64_t::one() / float64_t(4)),
    A3( float64_t::one() / float64_t(5)),
    A2(-float64_t::one() / float64_t(6)),
    A1( float64_t::one() / float64_t(7)),
    A0(-float64_t::one() / float64_t(8));

    //first 8 bits of mantissa
    int h0 = (x.v >> (52 - LOGTAB_SCALE)) & ((1 << LOGTAB_SCALE) - 1);
    //buf == 0.00000000_the_rest_mantissa_bits
    float64_t buf; buf.v = packToF64UI(0, 1023, x.v & ((1LL << (52 - LOGTAB_SCALE)) - 1));
    buf -= float64_t::one();

    float64_t tab0 = float64_t::fromRaw(icvLogTab[2*h0]);
    float64_t tab1 = float64_t::fromRaw(icvLogTab[2*h0 + 1]);

    float64_t x0 = buf * tab1;
    //if last elements of icvLogTab
    if(h0 == 255) x0 += float64_t(-float64_t::one()/float64_t(512));
    float64_t xq = x0*x0;

    return ln_2 * float64_t( expF64UI(x.v) - 1023) + tab0 + (((A0*xq + A2)*xq + A4)*xq + A6)*xq +
           (((A1*xq + A3)*xq + A5)*xq + A7)*x0;
}

/* ************************************************************************** *\
   Fast cube root by Ken Turkowski
   (http://www.worldserver.com/turk/computergraphics/papers.html)
\* ************************************************************************** */
static float32_t f32_cbrt(float32_t x)
{
    //special cases
    if (x.isNaN()) return float32_t::nan();
    if (x.isInf()) return x;

    int s = signF32UI(x.v);
    int ex = expF32UI(x.v) - 127;
    int shx = ex % 3;
    shx -= shx >= 0 ? 3 : 0;
    ex = (ex - shx) / 3 - 1; /* exponent of cube root */
    float64_t fr; fr.v = packToF64UI(0, shx + 1023, ((uint64_t)fracF32UI(x.v)) << 29);

    /* 0.125 <= fr < 1.0 */
    /* Use quartic rational polynomial with error < 2^(-24) */
    const float64_t A1 = float64_t::fromRaw(0x4046a09e6653ba70); //  45.2548339756803022511987494
    const float64_t A2 = float64_t::fromRaw(0x406808f46c6116e0); // 192.2798368355061050458134625
    const float64_t A3 = float64_t::fromRaw(0x405dca97439cae14); // 119.1654824285581628956914143
    const float64_t A4 = float64_t::fromRaw(0x402add70d2827500); //  13.43250139086239872172837314
    const float64_t A5 = float64_t::fromRaw(0x3fc4f15f83f55d2d); //   0.1636161226585754240958355063
    const float64_t A6 = float64_t::fromRaw(0x402d9e20660edb21); //  14.80884093219134573786480845
    const float64_t A7 = float64_t::fromRaw(0x4062ff15c0285815); // 151.9714051044435648658557668
    const float64_t A8 = float64_t::fromRaw(0x406510d06a8112ce); // 168.5254414101568283957668343
    const float64_t A9 = float64_t::fromRaw(0x4040fecbc9e2c375); //  33.9905941350215598754191872
    const float64_t A10 = float64_t::one();

    fr = ((((A1 * fr + A2) * fr + A3) * fr + A4) * fr + A5)/
         ((((A6 * fr + A7) * fr + A8) * fr + A9) * fr + A10);
    /* fr *= 2^ex * sign */

    // checks for "+0" and "-0", reset sign bit
    float32_t y; y.v = ((x.v & ((1u << 31) - 1)) != 0) ? packToF32UI(s, ex + 127, (uint32_t)(fracF64UI(fr.v) >> 29)) : 0;
    return y;
}

/// POW functions ///

static float32_t f32_pow( float32_t x, float32_t y)
{
    static const float32_t zero = float32_t::zero(), one = float32_t::one(), inf = float32_t::inf(), nan = float32_t::nan();
    bool xinf = x.isInf(), yinf = y.isInf(), xnan = x.isNaN(), ynan = y.isNaN();
    float32_t ax = abs(x);
    bool useInf = (y > zero) == (ax > one);
    float32_t v;
    //special cases
    if(ynan) v = nan;
    else if(yinf) v = (ax == one || xnan) ? nan : (useInf ? inf : zero);
    else if(y == zero) v = one;
    else if(y == one ) v = x;
    else //here y is ok
    {
        if(xnan) v = nan;
        else if(xinf) v = (y < zero) ? zero : inf;
        else if(y == f32_roundToInt(y, round_near_even, false)) v = f32_powi(x, f32_to_i32(y, round_near_even, false));
        else if(x  < zero) v = nan;
        // (0 ** 0) == 1
        else if(x == zero) v = (y < zero) ? inf : (y == zero ? one : zero);
        // here x and y are ok
        else v = f32_exp(y * f32_log(x));
    }

    return v;
}

static float64_t f64_pow( float64_t x, float64_t y)
{
    static const float64_t zero = float64_t::zero(), one = float64_t::one(), inf = float64_t::inf(), nan = float64_t::nan();
    bool xinf = x.isInf(), yinf = y.isInf(), xnan = x.isNaN(), ynan = y.isNaN();
    float64_t ax = abs(x);
    bool useInf = (y > zero) == (ax > one);
    float64_t v;
    //special cases
    if(ynan) v = nan;
    else if(yinf) v = (ax == one || xnan) ? nan : (useInf ? inf : zero);
    else if(y == zero) v = one;
    else if(y == one ) v = x;
    else //here y is ok
    {
        if(xnan) v = nan;
        else if(xinf) v = (y < zero) ? zero : inf;
        else if(y == f64_roundToInt(y, round_near_even, false)) v = f64_powi(x, f64_to_i32(y, round_near_even, false));
        else if(x  < zero) v = nan;
        // (0 ** 0) == 1
        else if(x == zero) v = (y < zero) ? inf : (y == zero ? one : zero);
        // here x and y are ok
        else v = f64_exp(y * f64_log(x));
    }

    return v;
}

// These functions are for internal use only

static float32_t f32_powi( float32_t x, int y)
{
    float32_t v;
    //special case: (0 ** 0) == 1
    if(x == float32_t::zero())
        v = (y < 0) ? float32_t::inf() : (y == 0 ? float32_t::one() : float32_t::zero());
    // here x and y are ok
    else
    {
        float32_t a = float32_t::one(), b = x;
        int p = std::abs(y);
        if( y < 0 )
            b = float32_t::one()/b;
        while( p > 1 )
        {
            if( p & 1 )
                a *= b;
            b *= b;
            p >>= 1;
        }
        v = a * b;
    }

    return v;
}

static float64_t f64_powi( float64_t x, int y)
{
    float64_t v;
    //special case: (0 ** 0) == 1
    if(x == float64_t::zero())
        v = (y < 0) ? float64_t::inf() : (y == 0 ? float64_t::one() : float64_t::zero());
    // here x and y are ok
    else
    {
        float64_t a = float64_t::one(), b = x;
        int p = std::abs(y);
        if( y < 0 )
            b = float64_t::one()/b;
        while( p > 1 )
        {
            if( p & 1 )
                a *= b;
            b *= b;
            p >>= 1;
        }
        v = a * b;
    }

    return v;
}

/*
 * sin and cos functions taken from fdlibm with original comments
 * (edited where needed)
 */

static const float64_t pi2   = float64_t::pi().setExp(2);
static const float64_t piby2 = float64_t::pi().setExp(0);
static const float64_t piby4 = float64_t::pi().setExp(-1);
static const float64_t half  = float64_t::one()/float64_t(2);
static const float64_t third = float64_t::one()/float64_t(3);

/* __kernel_sin( x, y, iy)
 * N.B. from OpenCV side: y and iy removed, simplified to polynomial
 *
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 *
 * Algorithm
 *  1. Since sin(-x) = -sin(x), we need only to consider positive x.
 *  2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 *  3. sin(x) is approximated by a polynomial of degree 13 on
 *     [0,pi/4]
 *                       3            13
 *      sin(x) ~ x + S1*x + ... + S6*x
 *     where
 *
 *  |sin(x)         2     4     6     8     10     12  |     -58
 *  |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 *  |  x                                               |
 *
 *  4. sin(x+y) = sin(x) + sin'(x')*y
 *          ~ sin(x) + (1-x*x/2)*y
 *     For better accuracy, let
 *           3      2      2      2      2
 *      r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 *     then                   3    2
 *      sin(x) = x + (S1*x + (x *(r-y/2)+y))
 */

static const float64_t
// -1/3!  = -1/6
S1  = float64_t::fromRaw( 0xBFC5555555555549 ),
//  1/5!  =  1/120
S2  = float64_t::fromRaw( 0x3F8111111110F8A6 ),
// -1/7!  = -1/5040
S3  = float64_t::fromRaw( 0xBF2A01A019C161D5 ),
//  1/9!  =  1/362880
S4  = float64_t::fromRaw( 0x3EC71DE357B1FE7D ),
// -1/11! = -1/39916800
S5  = float64_t::fromRaw( 0xBE5AE5E68A2B9CEB ),
//  1/13! =  1/6227020800
S6  = float64_t::fromRaw( 0x3DE5D93A5ACFD57C );

static float64_t f64_sin_kernel(float64_t x)
{
    if(x.getExp() < -27)
    {
        if(x != x.zero()) raiseFlags(flag_inexact);
        return x;
    }

    float64_t z = x*x;
    return x*mulAdd(z, mulAdd(z, mulAdd(z, mulAdd(z, mulAdd(z, mulAdd(z,
                    S6, S5), S4), S3), S2), S1), x.one());
}

/*
 * __kernel_cos( x,  y )
 * N.B. from OpenCV's side: y removed, simplified to one polynomial
 *
 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 *
 * Algorithm
 *  1. Since cos(-x) = cos(x), we need only to consider positive x.
 *  2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
 *  3. cos(x) is approximated by a polynomial of degree 14 on
 *     [0,pi/4]
 *                           4            14
 *      cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
 *     where the remez error is
 *
 *  |              2     4     6     8     10    12     14 |     -58
 *  |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
 *  |                                                      |
 *
 *                 4     6     8     10    12     14
 *  4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
 *         cos(x) = 1 - x*x/2 + r
 *     since cos(x+y) ~ cos(x) - sin(x)*y
 *            ~ cos(x) - x*y,
 *     a correction term is necessary in cos(x) and hence
 *      cos(x+y) = 1 - (x*x/2 - (r - x*y))
 *
 * N.B. The following part was removed since we have enough precision
 *
 *     For better accuracy when x > 0.3, let qx = |x|/4 with
 *     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
 *     Then
 *      cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
 *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
 *     magnitude of the latter is at least a quarter of x*x/2,
 *     thus, reducing the rounding error in the subtraction.
 */

static const float64_t
//  1/4!  =  1/24
C1  = float64_t::fromRaw( 0x3FA555555555554C ),
// -1/6!  = -1/720
C2  = float64_t::fromRaw( 0xBF56C16C16C15177 ),
//  1/8!  =  1/40320
C3  = float64_t::fromRaw( 0x3EFA01A019CB1590 ),
// -1/10! = -1/3628800
C4  = float64_t::fromRaw( 0xBE927E4F809C52AD ),
//  1/12! =  1/479001600
C5  = float64_t::fromRaw( 0x3E21EE9EBDB4B1C4 ),
// -1/14! = -1/87178291200
C6  = float64_t::fromRaw( 0xBDA8FAE9BE8838D4 );

static float64_t f64_cos_kernel(float64_t x)
{
    if(x.getExp() < -27)
    {
        if(x != x.zero()) raiseFlags(flag_inexact);
        return x.one();
    }

    float64_t z = x*x;
    return mulAdd(mulAdd(z, mulAdd(z, mulAdd(z, mulAdd(z, mulAdd(z, mulAdd(z,
                  C6, C5), C4), C3), C2), C1), -half), z, x.one());
}

static void f64_sincos_reduce(const float64_t& x, float64_t& y, int& n)
{
    if(abs(x) < piby4)
    {
        n = 0, y = x;
    }
    else
    {
        /* argument reduction needed */
        float64_t p = f64_rem(x, pi2);
        float64_t v = p - float64_t::eps().setExp(-10);
        if(abs(v) <= piby4)
        {
            n = 0; y = p;
        }
        else if(abs(v) <= (float64_t(3)*piby4))
        {
            n = (p > 0) ? 1 : 3;
            y = (p > 0) ? p - piby2 : p + piby2;
            if(p > 0) n = 1, y = p - piby2;
            else      n = 3, y = p + piby2;
        }
        else
        {
            n = 2;
            y = (p > 0) ? p - p.pi() : p + p.pi();
        }
    }
}

/* sin(x)
 * Return sine function of x.
 *
 * kernel function:
 *  __kernel_sin        ... sine function on [-pi/4,pi/4]
 *  __kernel_cos        ... cose function on [-pi/4,pi/4]
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *  [-PI/4, +PI/4]. Reduce the argument x to y = x-k*pi/2
 *  in [-pi/4 , +pi/4], and let n = k mod 4.
 *  We have
 *
 *      n        sin(x)    cos(x)    tan(x)
 *     ----------------------------------------------------------
 *      0          S       C         T
 *      1          C      -S        -1/T
 *      2         -S      -C         T
 *      3         -C       S        -1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *  TRIG(x) returns trig(x) nearly rounded
 */

static float64_t f64_sin( float64_t x )
{
    if(x.isInf() || x.isNaN()) return x.nan();

    float64_t y; int n;
    f64_sincos_reduce(x, y, n);
    switch (n)
    {
    case 0:  return  f64_sin_kernel(y);
    case 1:  return  f64_cos_kernel(y);
    case 2:  return -f64_sin_kernel(y);
    default: return -f64_cos_kernel(y);
    }
}

/* cos(x)
 * Return cosine function of x.
 *
 * kernel function:
 *  __kernel_sin        ... sine function on [-pi/4,pi/4]
 *  __kernel_cos        ... cosine function on [-pi/4,pi/4]
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *  [-PI/4, +PI/4]. Reduce the argument x to y = x-k*pi/2
 *  in [-pi/4 , +pi/4], and let n = k mod 4.
 *  We have
 *
 *      n       sin(x)      cos(x)       tan(x)
 *     ----------------------------------------------------------
 *      0       S            C           T
 *      1       C           -S          -1/T
 *      2      -S           -C           T
 *      3      -C            S          -1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *  TRIG(x) returns trig(x) nearly rounded
 */

static float64_t f64_cos( float64_t x )
{
    if(x.isInf() || x.isNaN()) return x.nan();

    float64_t y; int n;
    f64_sincos_reduce(x, y, n);
    switch (n)
    {
    case 0:  return  f64_cos_kernel(y);
    case 1:  return -f64_sin_kernel(y);
    case 2:  return -f64_cos_kernel(y);
    default: return  f64_sin_kernel(y);
    }
}

}