darknet_importer.cpp
7.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
// (3-clause BSD License)
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * Neither the names of the copyright holders nor the names of the contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <vector>
#include <map>
#include "darknet_io.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
namespace
{
class DarknetImporter
{
darknet::NetParameter net;
public:
DarknetImporter() {}
DarknetImporter(std::istream &cfgStream, std::istream &darknetModelStream)
{
CV_TRACE_FUNCTION();
ReadNetParamsFromCfgStreamOrDie(cfgStream, &net);
ReadNetParamsFromBinaryStreamOrDie(darknetModelStream, &net);
}
DarknetImporter(std::istream &cfgStream)
{
CV_TRACE_FUNCTION();
ReadNetParamsFromCfgStreamOrDie(cfgStream, &net);
}
struct BlobNote
{
BlobNote(const std::string &_name, int _layerId, int _outNum) :
name(_name), layerId(_layerId), outNum(_outNum) {}
std::string name;
int layerId, outNum;
};
std::vector<BlobNote> addedBlobs;
std::map<String, int> layerCounter;
void populateNet(Net dstNet)
{
CV_TRACE_FUNCTION();
int layersSize = net.layer_size();
layerCounter.clear();
addedBlobs.clear();
addedBlobs.reserve(layersSize + 1);
//setup input layer names
{
std::vector<String> netInputs(net.input_size());
for (int inNum = 0; inNum < net.input_size(); inNum++)
{
addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum));
netInputs[inNum] = net.input(inNum);
}
dstNet.setInputsNames(netInputs);
}
for (int li = 0; li < layersSize; li++)
{
const darknet::LayerParameter &layer = net.layer(li);
String name = layer.name();
String type = layer.type();
LayerParams layerParams = layer.getLayerParams();
int repetitions = layerCounter[name]++;
if (repetitions)
name += cv::format("_%d", repetitions);
int id = dstNet.addLayer(name, type, layerParams);
// iterate many bottoms layers (for example for: route -1, -4)
for (int inNum = 0; inNum < layer.bottom_size(); inNum++)
addInput(layer.bottom(inNum), id, inNum, dstNet, layer.name());
for (int outNum = 0; outNum < layer.top_size(); outNum++)
addOutput(layer, id, outNum);
}
addedBlobs.clear();
}
void addOutput(const darknet::LayerParameter &layer, int layerId, int outNum)
{
const std::string &name = layer.top(outNum);
bool haveDups = false;
for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--)
{
if (addedBlobs[idx].name == name)
{
haveDups = true;
break;
}
}
if (haveDups)
{
bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name;
if (!isInplace)
CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources");
}
addedBlobs.push_back(BlobNote(name, layerId, outNum));
}
void addInput(const std::string &name, int layerId, int inNum, Net &dstNet, std::string nn)
{
int idx;
for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--)
{
if (addedBlobs[idx].name == name)
break;
}
if (idx < 0)
{
CV_Error(Error::StsObjectNotFound, "Can't find output blob \"" + name + "\"");
return;
}
dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum);
}
};
static Net readNetFromDarknet(std::istream &cfgFile, std::istream &darknetModel)
{
Net net;
DarknetImporter darknetImporter(cfgFile, darknetModel);
darknetImporter.populateNet(net);
return net;
}
static Net readNetFromDarknet(std::istream &cfgFile)
{
Net net;
DarknetImporter darknetImporter(cfgFile);
darknetImporter.populateNet(net);
return net;
}
}
Net readNetFromDarknet(const String &cfgFile, const String &darknetModel /*= String()*/)
{
std::ifstream cfgStream(cfgFile.c_str());
if (!cfgStream.is_open())
{
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(cfgFile));
}
if (darknetModel != String())
{
std::ifstream darknetModelStream(darknetModel.c_str(), std::ios::binary);
if (!darknetModelStream.is_open())
{
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(darknetModel));
}
return readNetFromDarknet(cfgStream, darknetModelStream);
}
else
return readNetFromDarknet(cfgStream);
}
struct BufferStream : public std::streambuf
{
BufferStream(const char* s, std::size_t n)
{
char* ptr = const_cast<char*>(s);
setg(ptr, ptr, ptr + n);
}
};
Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, const char *bufferModel, size_t lenModel)
{
BufferStream cfgBufferStream(bufferCfg, lenCfg);
std::istream cfgStream(&cfgBufferStream);
if (lenModel)
{
BufferStream weightsBufferStream(bufferModel, lenModel);
std::istream weightsStream(&weightsBufferStream);
return readNetFromDarknet(cfgStream, weightsStream);
}
else
return readNetFromDarknet(cfgStream);
}
Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, const std::vector<uchar>& bufferModel)
{
const char* bufferCfgPtr = reinterpret_cast<const char*>(&bufferCfg[0]);
const char* bufferModelPtr = bufferModel.empty() ? NULL :
reinterpret_cast<const char*>(&bufferModel[0]);
return readNetFromDarknet(bufferCfgPtr, bufferCfg.size(),
bufferModelPtr, bufferModel.size());
}
CV__DNN_INLINE_NS_END
}} // namespace