eltwise_layer.cpp
21.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv
{
namespace dnn
{
class EltwiseLayerInt8Impl CV_FINAL : public EltwiseLayerInt8
{
public:
enum EltwiseOp
{
PROD = 0,
SUM = 1,
MAX = 2
} op;
std::vector<float> coeffs;
std::vector<int> zeropoints;
enum OutputChannelsMode
{
ELTWISE_CHANNNELS_SAME = 0, //!< number of channels from inputs must be the same and equal to output's number of channels
ELTWISE_CHANNNELS_INPUT_0, //!< number of channels from inputs may be different,
//!< output's number of channels is equal to number of channels of first input
//!< number of channels of other inputs should not be greater than number of channels of first input
ELTWISE_CHANNNELS_INPUT_0_TRUNCATE, //!< number of channels from inputs may be different,
//!< output's number of channels is equal to number of channels of first input
//!< there is restriction on number of channels of other inputs
//!< extra channels of other inputs is ignored
ELTWISE_CHANNNELS_USE_MAX, //!< number of channels from inputs may be different,
//!< output's number of channels is equal to maximal number of input channels
//!< @note supported operation: `SUM`
} channelsModeInput;
mutable OutputChannelsMode channelsMode; //!< "optimized" channels mode (switch to ELTWISE_CHANNNELS_SAME if number of input channels are equal)
mutable /*size_t*/int outputChannels;
EltwiseLayerInt8Impl(const LayerParams& params)
: outputChannels(0)
{
setParamsFrom(params);
offset = params.get<float>("offset", 0.f);
hasVecInput = false;
op = SUM;
if (params.has("operation"))
{
String operation = toLowerCase(params.get<String>("operation"));
if (operation == "prod")
op = PROD;
else if (operation == "sum")
op = SUM;
else if (operation == "max")
op = MAX;
else
CV_Error(cv::Error::StsBadArg, "Unknown operation type \"" + operation + "\"");
}
if (params.has("coeff"))
{
DictValue paramCoeff = params.get("coeff");
int i, n = paramCoeff.size();
coeffs.resize(n);
for (i = 0; i < n; i++)
{
coeffs[i] = paramCoeff.get<float>(i);
}
}
if (params.has("input_zeropoints"))
{
DictValue zp = params.get("input_zeropoints");
int i, n = zp.size();
zeropoints.resize(n);
for (i = 0; i < n; i++)
{
zeropoints[i] = zp.get<int>(i);
}
}
channelsModeInput = ELTWISE_CHANNNELS_SAME;
if (params.has("output_channels_mode"))
{
String v = toLowerCase(params.get<String>("output_channels_mode"));
if (v == "same")
{
channelsModeInput = ELTWISE_CHANNNELS_SAME;
}
else if (v == "input_0")
{
channelsModeInput = ELTWISE_CHANNNELS_INPUT_0;
}
else if (v == "input_0_truncate")
{
channelsModeInput = ELTWISE_CHANNNELS_INPUT_0_TRUNCATE;
}
else if (v == "max_input_channels")
{
channelsModeInput = ELTWISE_CHANNNELS_USE_MAX;
if (op != SUM)
CV_Error(cv::Error::StsBadArg, "[" + type + "]:(" + name + ") 'max' channels mode is limited to SUM operation only");
}
else
CV_Error(cv::Error::StsBadArg, "[" + type + "]:(" + name + ") unknown channels mode: \"" + v + "\"");
}
channelsMode = channelsModeInput;
// TODO Must have checks for other unknown options
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() >= 2);
CV_Assert(inputs[0].size() >= 2);
CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
CV_Assert(op == SUM || op == PROD || coeffs.size() == 0);
int dims = inputs[0].size();
// Number of channels in output shape is determined by the first input tensor.
bool variableChannels = false;
int numChannels = inputs[0][1];
for (size_t i = 1; i < inputs.size(); i++)
{
CV_Assert(inputs[0][0] == inputs[i][0]); // batch sizes are equal
int input_channels = inputs[i][1];
if (numChannels != input_channels)
variableChannels = true;
if (channelsModeInput == ELTWISE_CHANNNELS_SAME)
{
CV_Assert(numChannels == input_channels);
}
else if (channelsModeInput == ELTWISE_CHANNNELS_INPUT_0)
{
CV_Assert(numChannels >= input_channels);
}
else if (channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
{
// nothing to check
}
else if (channelsModeInput == ELTWISE_CHANNNELS_USE_MAX)
{
numChannels = std::max(numChannels, input_channels);
}
else
{
CV_Assert(0 && "Internal error");
}
}
channelsMode = variableChannels ? channelsModeInput : ELTWISE_CHANNNELS_SAME;
outputChannels = numChannels;
outputs.assign(1, inputs[0]);
outputs[0][1] = numChannels;
if (dims > 2)
{
size_t vecIdx = 0;
bool isVecFound = false;
for (size_t i = 0; i < inputs.size(); i++)
{
bool allOnes = isAllOnes(inputs[i], 2, dims);
if (!allOnes && !isVecFound)
{
vecIdx = i;
isVecFound = true;
}
if (!allOnes && i != vecIdx)
{
for (size_t j = 2; j < dims; j++)
{
CV_Assert(inputs[vecIdx][j] == inputs[i][j]);
}
}
}
if (channelsModeInput == ELTWISE_CHANNNELS_SAME && isVecFound)
{
for (size_t j = 2; j < dims; j++)
{
outputs[0][j] = inputs[vecIdx][j];
}
}
}
return false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inpShape = shape(inputs[i].size);
if (isAllOnes(inpShape, 2, inputs[i].dims))
{
hasVecInput = true;
return;
}
}
}
class EltwiseInvoker : public ParallelLoopBody
{
EltwiseLayerInt8Impl& self;
std::vector<const Mat*> srcs;
std::vector<int> srcNumChannels;
int nsrcs;
Mat* dst;
Mat* buf;
std::vector<float> coeffs;
std::vector<int> zeropoints;
int nstripes;
const Mat* activLUT;
const ActivationLayerInt8* activ;
int channels;
size_t planeSize;
float offset;
EltwiseInvoker(EltwiseLayerInt8Impl& self_)
: self(self_)
, nsrcs(0), dst(0), buf(0), nstripes(0), activ(0), channels(0)
, planeSize(0), offset(0)
{}
public:
static void run(EltwiseLayerInt8Impl& self,
const Mat* srcs, int nsrcs, Mat& buf, Mat& dst,
int nstripes, float offset)
{
const EltwiseOp op = self.op;
CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 5, ""); CV_CheckTypeEQ(dst.type(), CV_8SC1, ""); CV_Assert(dst.isContinuous());
CV_Assert(self.coeffs.empty() || self.coeffs.size() == (size_t)nsrcs);
CV_CheckGE(nsrcs, 2, "");
CV_Assert(self.outputChannels == dst.size[1]);
EltwiseInvoker p(self);
p.srcs.resize(nsrcs);
p.srcNumChannels.resize(nsrcs);
p.coeffs = self.coeffs; // can be sorted
p.zeropoints = self.zeropoints;
bool sortInputs = false;
for( int i = 0; i < nsrcs; i++ )
{
p.srcs[i] = &srcs[i];
CV_CheckEQ(srcs[i].dims, dst.dims, "");
CV_Assert(srcs[i].isContinuous());
CV_Assert(srcs[i].type() == dst.type());
p.srcNumChannels[i] = (srcs[i].dims >= 4) ? srcs[i].size[1] : 1;
if (self.channelsMode == ELTWISE_CHANNNELS_SAME)
{
CV_Assert(srcs[i].size == dst.size);
}
else if (self.channelsMode == ELTWISE_CHANNNELS_INPUT_0)
{
if (i == 0)
CV_Assert(srcs[0].size == dst.size);
CV_Assert(self.outputChannels >= p.srcNumChannels[i]);
sortInputs = true;
}
else if (self.channelsMode == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
{
if (i == 0)
CV_Assert(srcs[0].size == dst.size);
sortInputs = true;
}
else if (self.channelsMode == ELTWISE_CHANNNELS_USE_MAX)
{
CV_Assert(op == SUM);
CV_Assert(self.outputChannels >= p.srcNumChannels[i]);
sortInputs = true;
}
else
{
CV_Assert(0 && "Internal error");
}
if (sortInputs)
{
// Sort srcs and coefficients in the desc order by number of channels
for (int j = i; j >= 1; j--)
{
if (std::min(self.outputChannels, p.srcs[j - 1]->size[1]) < std::min(self.outputChannels, p.srcs[j]->size[1]))
{
std::swap(p.srcs[j - 1], p.srcs[j]);
std::swap(p.srcNumChannels[j - 1], p.srcNumChannels[j]);
if (!p.coeffs.empty())
std::swap(p.coeffs[j - 1], p.coeffs[j]);
if (!p.zeropoints.empty())
std::swap(p.zeropoints[j - 1], p.zeropoints[j]);
}
else
break;
}
}
}
p.nsrcs = nsrcs;
p.dst = &dst;
p.buf = &buf;
p.nstripes = nstripes;
p.offset = offset;
p.channels = (dst.dims >= 4 ? dst.size[1] : 1);
p.planeSize = dst.total(dst.dims >= 4 ? 2 : 1);
CV_CheckEQ(dst.total(), dst.size[0] * p.channels * p.planeSize, "");
p.activLUT = &self.activationLUT;
p.activ = !self.activationLUT.empty() ? self.activ.get() : 0;
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
const EltwiseOp op = self.op;
size_t total = dst->size[0]*planeSize;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
const float* coeffsptr = !coeffs.empty() ? &coeffs[0] : 0;
const int* zeropointsptr = !zeropoints.empty() ? &zeropoints[0] : 0;
const int8_t* lutptr = !activLUT->empty() ? activLUT->ptr<int8_t>() : 0;
int8_t* dstptr0 = dst->ptr<int8_t>();
float* bufptr0 = buf->ptr<float>();
int blockSize0 = 1 << 12;
for (size_t ofs = stripeStart; ofs < stripeEnd; )
{
int sampleIdx = (int)(ofs / planeSize);
int delta = (int)ofs - sampleIdx * planeSize;
int blockSize = std::min(blockSize0, std::min((int)(stripeEnd - ofs), (int)planeSize - delta));
if( blockSize <= 0 )
break;
ofs += blockSize;
for (int c = 0; c < channels; c++)
{
size_t dstIdx = delta + (sampleIdx*channels + c)*planeSize;
int8_t* dstptr = dstptr0 + dstIdx;
float* bufptr = bufptr0 + dstIdx;
// process first two inputs
{
const int8_t* srcptr0 = srcs[0]->ptr<int8_t>() + dstIdx;
const int inputIdx = 1;
int src1_channels = srcNumChannels[inputIdx];
if (c >= src1_channels)
{
// no data from second input
if (!coeffsptr)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = srcptr0[j];
}
}
else
{
float c0 = coeffsptr[0];
int z0 = op == PROD ? zeropointsptr[0] : 0;
for (int j = 0; j < blockSize; j++)
{
bufptr[j] = c0 * (srcptr0[j] - z0);
}
}
}
else
{
size_t srcIdx = delta + (sampleIdx * src1_channels + c) * planeSize;
const int8_t* srcptrI = srcs[inputIdx]->ptr<int8_t>() + srcIdx;
if (op == PROD)
{
float c0 = coeffsptr[0];
float c1 = coeffsptr[1];
int z0 = zeropointsptr[0];
int z1 = zeropointsptr[1];
for (int j = 0; j < blockSize; j++)
{
bufptr[j] = (c0*(srcptr0[j] - z0)) * (c1*(srcptrI[j] - z1));
}
}
else if (op == MAX)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = std::max(srcptr0[j], srcptrI[j]);
}
}
else if (op == SUM)
{
float c0 = coeffsptr[0];
float c1 = coeffsptr[1];
for (int j = 0; j < blockSize; j++)
{
bufptr[j] = c0*srcptr0[j] + c1*srcptrI[j];
}
}
else
CV_Error(Error::StsInternal, "");
}
}
// aggregate other inputs (3+)
for (size_t inputIdx = 2; inputIdx < nsrcs; inputIdx++)
{
int srcI_channels = srcNumChannels[inputIdx];
if (c >= srcI_channels)
continue; // no data from second input
size_t srcIdx = delta + (sampleIdx * srcI_channels + c) * planeSize;
const int8_t* srcptrI = srcs[inputIdx]->ptr<int8_t>() + srcIdx;
if (op == PROD)
{
float cI = coeffsptr[inputIdx];
int zI = zeropointsptr[inputIdx];
for (int j = 0; j < blockSize; j++)
{
bufptr[j] *= cI*(srcptrI[j] - zI);
}
}
else if (op == MAX)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = std::max(dstptr[j], srcptrI[j]);
}
}
else if (op == SUM)
{
float cI = coeffsptr[inputIdx];
for (int j = 0; j < blockSize; j++)
{
bufptr[j] += cI * srcptrI[j];
}
}
else
CV_Error(Error::StsInternal, "");
}
// add offset and saturate cast to int8
if (op == SUM || op == PROD)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = saturate_cast<int8_t>(std::round(bufptr[j] + offset));
}
}
}
if( activ )
{
int8_t* ptr = dstptr0 + delta + sampleIdx*channels*planeSize;
activ->forwardSlice(ptr, lutptr, ptr, blockSize, planeSize, 0, channels);
}
}
}
};
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(outputs.size() == 1);
const int nstripes = getNumThreads();
if (channelsModeInput == ELTWISE_CHANNNELS_SAME && inputs[0].dims > 2)
{
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape inpShape = shape(inputs[i].size);
bool allOnes = isAllOnes(inpShape, 2, inputs[i].dims);
if (allOnes)
{
Mat tmpInput = inputs[i];
MatShape outShape = shape(outputs[0].size);
size_t xSize = outShape[2];
for (size_t j = 3; j < outShape.size(); j++)
xSize *= outShape[j];
int dimVec[3] = {outShape[0], outShape[1], (int) xSize};
std::vector<int> matSizesVec(&dimVec[0], &dimVec[0] + 3);
inputs[i] = Mat(matSizesVec, tmpInput.type());
std::vector<int> idx(outShape.size(), 0);
std::vector<int> outIdx(inpShape.size(), 0);
for (size_t j = 0; j < outShape[0]; j++)
{
outIdx[0] = idx[0] = j;
for(size_t k = 0; k < outShape[1]; k++)
{
outIdx[1] = idx[1] = k;
for (size_t x = 0; x < xSize; x++)
{
outIdx[2] = x;
inputs[i].at<int8_t>(outIdx.data()) = tmpInput.at<int8_t>(idx.data());
}
}
}
inputs[i] = inputs[i].reshape(0, outShape);
}
}
}
Mat buf = Mat(shape(outputs[0]), CV_32F); // to store intermediate results
EltwiseInvoker::run(*this, &inputs[0], (int)inputs.size(), buf, outputs[0], nstripes, offset);
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
CV_Assert(inputs.size());
// FIXIT: handle inputs with different number of channels
long flops = inputs.size() * total(inputs[0]);
return flops;
}
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
Ptr<ActivationLayerInt8> activ_int8 = layer.dynamicCast<ActivationLayerInt8>();
if (!activ_int8.empty())
{
activ = activ_int8;
if (!activ_int8->blobs.empty())
activationLUT = activ_int8->blobs[0];
return true;
}
return false;
}
Mat activationLUT;
Ptr<ActivationLayerInt8> activ;
private:
bool hasVecInput;
float offset;
};
Ptr<EltwiseLayerInt8> EltwiseLayerInt8::create(const LayerParams& params)
{
return Ptr<EltwiseLayerInt8>(new EltwiseLayerInt8Impl(params));
}
}
}