eltwise_layer.cpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "../precomp.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>

namespace cv
{
namespace dnn
{

class EltwiseLayerInt8Impl CV_FINAL : public EltwiseLayerInt8
{
public:
    enum EltwiseOp
    {
        PROD = 0,
        SUM = 1,
        MAX = 2
    } op;
    std::vector<float> coeffs;
    std::vector<int> zeropoints;

    enum OutputChannelsMode
    {
        ELTWISE_CHANNNELS_SAME = 0,              //!< number of channels from inputs must be the same and equal to output's number of channels
        ELTWISE_CHANNNELS_INPUT_0,               //!< number of channels from inputs may be different,
                                                 //!< output's number of channels is equal to number of channels of first input
                                                 //!< number of channels of other inputs should not be greater than number of channels of first input
        ELTWISE_CHANNNELS_INPUT_0_TRUNCATE,      //!< number of channels from inputs may be different,
                                                 //!< output's number of channels is equal to number of channels of first input
                                                 //!< there is restriction on number of channels of other inputs
                                                 //!< extra channels of other inputs is ignored
        ELTWISE_CHANNNELS_USE_MAX,               //!< number of channels from inputs may be different,
                                                 //!< output's number of channels is equal to maximal number of input channels
                                                 //!< @note supported operation: `SUM`
    } channelsModeInput;


    mutable OutputChannelsMode channelsMode;     //!< "optimized" channels mode (switch to ELTWISE_CHANNNELS_SAME if number of input channels are equal)
    mutable /*size_t*/int outputChannels;

    EltwiseLayerInt8Impl(const LayerParams& params)
        : outputChannels(0)
    {
        setParamsFrom(params);
        offset = params.get<float>("offset", 0.f);
        hasVecInput = false;
        op = SUM;
        if (params.has("operation"))
        {
            String operation = toLowerCase(params.get<String>("operation"));
            if (operation == "prod")
                op = PROD;
            else if (operation == "sum")
                op = SUM;
            else if (operation == "max")
                op = MAX;
            else
                CV_Error(cv::Error::StsBadArg, "Unknown operation type \"" + operation + "\"");
        }

        if (params.has("coeff"))
        {
            DictValue paramCoeff = params.get("coeff");
            int i, n = paramCoeff.size();
            coeffs.resize(n);
            for (i = 0; i < n; i++)
            {
                coeffs[i] = paramCoeff.get<float>(i);
            }
        }

        if (params.has("input_zeropoints"))
        {
            DictValue zp = params.get("input_zeropoints");
            int i, n = zp.size();
            zeropoints.resize(n);
            for (i = 0; i < n; i++)
            {
                zeropoints[i] = zp.get<int>(i);
            }
        }

        channelsModeInput = ELTWISE_CHANNNELS_SAME;
        if (params.has("output_channels_mode"))
        {
            String v = toLowerCase(params.get<String>("output_channels_mode"));
            if (v == "same")
            {
                channelsModeInput = ELTWISE_CHANNNELS_SAME;
            }
            else if (v == "input_0")
            {
                channelsModeInput = ELTWISE_CHANNNELS_INPUT_0;
            }
            else if (v == "input_0_truncate")
            {
                channelsModeInput = ELTWISE_CHANNNELS_INPUT_0_TRUNCATE;
            }
            else if (v == "max_input_channels")
            {
                channelsModeInput = ELTWISE_CHANNNELS_USE_MAX;
                if (op != SUM)
                    CV_Error(cv::Error::StsBadArg, "[" + type + "]:(" + name + ") 'max' channels mode is limited to SUM operation only");
            }
            else
                CV_Error(cv::Error::StsBadArg, "[" + type + "]:(" + name + ") unknown channels mode: \"" + v + "\"");
        }
        channelsMode = channelsModeInput;

        // TODO Must have checks for other unknown options
    }

    virtual bool supportBackend(int backendId) CV_OVERRIDE
    {
        return backendId == DNN_BACKEND_OPENCV;
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const CV_OVERRIDE
    {
        CV_Assert(inputs.size() >= 2);
        CV_Assert(inputs[0].size() >= 2);
        CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
        CV_Assert(op == SUM || op == PROD || coeffs.size() == 0);

        int dims = inputs[0].size();
        // Number of channels in output shape is determined by the first input tensor.
        bool variableChannels = false;
        int numChannels = inputs[0][1];
        for (size_t i = 1; i < inputs.size(); i++)
        {
            CV_Assert(inputs[0][0] == inputs[i][0]);  // batch sizes are equal

            int input_channels = inputs[i][1];
            if (numChannels != input_channels)
                variableChannels = true;

            if (channelsModeInput == ELTWISE_CHANNNELS_SAME)
            {
                CV_Assert(numChannels == input_channels);
            }
            else if (channelsModeInput == ELTWISE_CHANNNELS_INPUT_0)
            {
                CV_Assert(numChannels >= input_channels);
            }
            else if (channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
            {
                // nothing to check
            }
            else if (channelsModeInput == ELTWISE_CHANNNELS_USE_MAX)
            {
                numChannels = std::max(numChannels, input_channels);
            }
            else
            {
                CV_Assert(0 && "Internal error");
            }
        }

        channelsMode = variableChannels ? channelsModeInput : ELTWISE_CHANNNELS_SAME;
        outputChannels = numChannels;

        outputs.assign(1, inputs[0]);
        outputs[0][1] = numChannels;

        if (dims > 2)
        {
            size_t vecIdx = 0;
            bool isVecFound = false;
            for (size_t i = 0; i < inputs.size(); i++)
            {
                bool allOnes = isAllOnes(inputs[i], 2, dims);
                if (!allOnes && !isVecFound)
                {
                    vecIdx = i;
                    isVecFound = true;
                }

                if (!allOnes && i != vecIdx)
                {
                    for (size_t j = 2; j < dims; j++)
                    {
                         CV_Assert(inputs[vecIdx][j] == inputs[i][j]);
                    }
                }
            }

            if (channelsModeInput == ELTWISE_CHANNNELS_SAME && isVecFound)
            {
                for (size_t j = 2; j < dims; j++)
                {
                    outputs[0][j] = inputs[vecIdx][j];
                }
            }
        }

        return false;
    }

    void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
    {
        std::vector<Mat> inputs;
        inputs_arr.getMatVector(inputs);

        for (size_t i = 0; i < inputs.size(); i++)
        {
            MatShape inpShape = shape(inputs[i].size);
            if (isAllOnes(inpShape, 2, inputs[i].dims))
            {
                hasVecInput = true;
                return;
            }
        }
    }

    class EltwiseInvoker : public ParallelLoopBody
    {
        EltwiseLayerInt8Impl& self;
        std::vector<const Mat*> srcs;
        std::vector<int> srcNumChannels;
        int nsrcs;
        Mat* dst;
        Mat* buf;
        std::vector<float> coeffs;
        std::vector<int> zeropoints;
        int nstripes;
        const Mat* activLUT;
        const ActivationLayerInt8* activ;
        int channels;
        size_t planeSize;
        float offset;

        EltwiseInvoker(EltwiseLayerInt8Impl& self_)
            : self(self_)
            , nsrcs(0), dst(0), buf(0), nstripes(0), activ(0), channels(0)
            , planeSize(0), offset(0)
        {}

    public:
        static void run(EltwiseLayerInt8Impl& self,
                        const Mat* srcs, int nsrcs, Mat& buf, Mat& dst,
                        int nstripes, float offset)
        {
            const EltwiseOp op = self.op;
            CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 5, ""); CV_CheckTypeEQ(dst.type(), CV_8SC1, ""); CV_Assert(dst.isContinuous());
            CV_Assert(self.coeffs.empty() || self.coeffs.size() == (size_t)nsrcs);
            CV_CheckGE(nsrcs, 2, "");

            CV_Assert(self.outputChannels == dst.size[1]);

            EltwiseInvoker p(self);
            p.srcs.resize(nsrcs);
            p.srcNumChannels.resize(nsrcs);
            p.coeffs = self.coeffs;  // can be sorted
            p.zeropoints = self.zeropoints;

            bool sortInputs = false;
            for( int i = 0; i < nsrcs; i++ )
            {
                p.srcs[i] = &srcs[i];
                CV_CheckEQ(srcs[i].dims, dst.dims, "");
                CV_Assert(srcs[i].isContinuous());
                CV_Assert(srcs[i].type() == dst.type());
                p.srcNumChannels[i] = (srcs[i].dims >= 4) ? srcs[i].size[1] : 1;

                if (self.channelsMode == ELTWISE_CHANNNELS_SAME)
                {
                    CV_Assert(srcs[i].size == dst.size);
                }
                else if (self.channelsMode == ELTWISE_CHANNNELS_INPUT_0)
                {
                    if (i == 0)
                        CV_Assert(srcs[0].size == dst.size);
                    CV_Assert(self.outputChannels >= p.srcNumChannels[i]);
                    sortInputs = true;
                }
                else if (self.channelsMode == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
                {
                    if (i == 0)
                        CV_Assert(srcs[0].size == dst.size);
                    sortInputs = true;
                }
                else if (self.channelsMode == ELTWISE_CHANNNELS_USE_MAX)
                {
                    CV_Assert(op == SUM);
                    CV_Assert(self.outputChannels >= p.srcNumChannels[i]);
                    sortInputs = true;
                }
                else
                {
                    CV_Assert(0 && "Internal error");
                }

                if (sortInputs)
                {
                    // Sort srcs and coefficients in the desc order by number of channels
                    for (int j = i; j >= 1; j--)
                    {
                        if (std::min(self.outputChannels, p.srcs[j - 1]->size[1]) < std::min(self.outputChannels, p.srcs[j]->size[1]))
                        {
                            std::swap(p.srcs[j - 1], p.srcs[j]);
                            std::swap(p.srcNumChannels[j - 1], p.srcNumChannels[j]);
                            if (!p.coeffs.empty())
                                std::swap(p.coeffs[j - 1], p.coeffs[j]);
                            if (!p.zeropoints.empty())
                                std::swap(p.zeropoints[j - 1], p.zeropoints[j]);
                        }
                        else
                            break;
                    }
                }
            }

            p.nsrcs = nsrcs;
            p.dst = &dst;
            p.buf = &buf;
            p.nstripes = nstripes;
            p.offset = offset;
            p.channels = (dst.dims >= 4 ? dst.size[1] : 1);

            p.planeSize = dst.total(dst.dims >= 4 ? 2 : 1);
            CV_CheckEQ(dst.total(), dst.size[0] * p.channels * p.planeSize, "");
            p.activLUT = &self.activationLUT;
            p.activ = !self.activationLUT.empty() ? self.activ.get() : 0;

            parallel_for_(Range(0, nstripes), p, nstripes);
        }

        void operator()(const Range& r) const CV_OVERRIDE
        {
            const EltwiseOp op = self.op;
            size_t total = dst->size[0]*planeSize;
            size_t stripeSize = (total + nstripes - 1)/nstripes;
            size_t stripeStart = r.start*stripeSize;
            size_t stripeEnd = std::min(r.end*stripeSize, total);
            const float* coeffsptr = !coeffs.empty() ? &coeffs[0] : 0;
            const int* zeropointsptr = !zeropoints.empty() ? &zeropoints[0] : 0;
            const int8_t* lutptr = !activLUT->empty() ? activLUT->ptr<int8_t>() : 0;
            int8_t* dstptr0 = dst->ptr<int8_t>();
            float* bufptr0 = buf->ptr<float>();
            int blockSize0 = 1 << 12;

            for (size_t ofs = stripeStart; ofs < stripeEnd; )
            {
                int sampleIdx = (int)(ofs / planeSize);
                int delta = (int)ofs - sampleIdx * planeSize;
                int blockSize = std::min(blockSize0, std::min((int)(stripeEnd - ofs), (int)planeSize - delta));
                if( blockSize <= 0 )
                    break;
                ofs += blockSize;

                for (int c = 0; c < channels; c++)
                {
                    size_t dstIdx = delta + (sampleIdx*channels + c)*planeSize;
                    int8_t* dstptr = dstptr0 + dstIdx;
                    float* bufptr = bufptr0 + dstIdx;

                    // process first two inputs
                    {
                        const int8_t* srcptr0 = srcs[0]->ptr<int8_t>() + dstIdx;

                        const int inputIdx = 1;
                        int src1_channels = srcNumChannels[inputIdx];
                        if (c >= src1_channels)
                        {
                            // no data from second input
                            if (!coeffsptr)
                            {
                                for (int j = 0; j < blockSize; j++)
                                {
                                    dstptr[j] = srcptr0[j];
                                }
                            }
                            else
                            {
                                float c0 = coeffsptr[0];
                                int z0 = op == PROD ? zeropointsptr[0] : 0;
                                for (int j = 0; j < blockSize; j++)
                                {
                                    bufptr[j] = c0 * (srcptr0[j] - z0);
                                }
                            }
                        }
                        else
                        {
                            size_t srcIdx = delta + (sampleIdx * src1_channels + c) * planeSize;
                            const int8_t* srcptrI = srcs[inputIdx]->ptr<int8_t>() + srcIdx;

                            if (op == PROD)
                            {
                                float c0 = coeffsptr[0];
                                float c1 = coeffsptr[1];
                                int z0 = zeropointsptr[0];
                                int z1 = zeropointsptr[1];
                                for (int j = 0; j < blockSize; j++)
                                {
                                    bufptr[j] = (c0*(srcptr0[j] - z0)) * (c1*(srcptrI[j] - z1));
                                }
                            }
                            else if (op == MAX)
                            {
                                for (int j = 0; j < blockSize; j++)
                                {
                                    dstptr[j] = std::max(srcptr0[j], srcptrI[j]);
                                }
                            }
                            else if (op == SUM)
                            {
                                float c0 = coeffsptr[0];
                                float c1 = coeffsptr[1];
                                for (int j = 0; j < blockSize; j++)
                                {
                                    bufptr[j] = c0*srcptr0[j] + c1*srcptrI[j];
                                }
                            }
                            else
                                CV_Error(Error::StsInternal, "");
                        }
                    }

                    // aggregate other inputs (3+)
                    for (size_t inputIdx = 2; inputIdx < nsrcs; inputIdx++)
                    {
                        int srcI_channels = srcNumChannels[inputIdx];
                        if (c >= srcI_channels)
                            continue;  // no data from second input
                        size_t srcIdx = delta + (sampleIdx * srcI_channels + c) * planeSize;
                        const int8_t* srcptrI = srcs[inputIdx]->ptr<int8_t>() + srcIdx;

                        if (op == PROD)
                        {
                            float cI = coeffsptr[inputIdx];
                            int zI = zeropointsptr[inputIdx];
                            for (int j = 0; j < blockSize; j++)
                            {
                                bufptr[j] *= cI*(srcptrI[j] - zI);
                            }
                        }
                        else if (op == MAX)
                        {
                            for (int j = 0; j < blockSize; j++)
                            {
                                dstptr[j] = std::max(dstptr[j], srcptrI[j]);
                            }
                        }
                        else if (op == SUM)
                        {
                            float cI = coeffsptr[inputIdx];
                            for (int j = 0; j < blockSize; j++)
                            {
                                bufptr[j] += cI * srcptrI[j];
                            }
                        }
                        else
                            CV_Error(Error::StsInternal, "");
                    }

                    // add offset and saturate cast to int8
                    if (op == SUM || op == PROD)
                    {
                        for (int j = 0; j < blockSize; j++)
                        {
                            dstptr[j] = saturate_cast<int8_t>(std::round(bufptr[j] + offset));
                        }
                    }
                }
                if( activ )
                {
                    int8_t* ptr = dstptr0 + delta + sampleIdx*channels*planeSize;
                    activ->forwardSlice(ptr, lutptr, ptr, blockSize, planeSize, 0, channels);
                }
            }
        }
    };

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        std::vector<Mat> inputs, outputs;
        inputs_arr.getMatVector(inputs);
        outputs_arr.getMatVector(outputs);

        CV_Assert(outputs.size() == 1);
        const int nstripes = getNumThreads();

        if (channelsModeInput == ELTWISE_CHANNNELS_SAME && inputs[0].dims > 2)
        {
            for (size_t i = 0; i < inputs.size(); i++)
            {
                MatShape inpShape = shape(inputs[i].size);
                bool allOnes = isAllOnes(inpShape, 2, inputs[i].dims);

                if (allOnes)
                {
                    Mat tmpInput = inputs[i];
                    MatShape outShape = shape(outputs[0].size);
                    size_t xSize = outShape[2];
                    for (size_t j = 3; j < outShape.size(); j++)
                        xSize *= outShape[j];

                    int dimVec[3] = {outShape[0], outShape[1], (int) xSize};
                    std::vector<int> matSizesVec(&dimVec[0], &dimVec[0] + 3);
                    inputs[i] = Mat(matSizesVec, tmpInput.type());

                    std::vector<int> idx(outShape.size(), 0);
                    std::vector<int> outIdx(inpShape.size(), 0);

                    for (size_t j = 0; j < outShape[0]; j++)
                    {
                        outIdx[0] = idx[0] = j;
                        for(size_t k = 0; k < outShape[1]; k++)
                        {
                            outIdx[1] = idx[1] = k;
                            for (size_t x = 0; x < xSize; x++)
                            {
                                outIdx[2] = x;
                                inputs[i].at<int8_t>(outIdx.data()) = tmpInput.at<int8_t>(idx.data());
                            }
                        }
                    }
                    inputs[i] = inputs[i].reshape(0, outShape);
                }
            }
        }

        Mat buf = Mat(shape(outputs[0]), CV_32F); // to store intermediate results
        EltwiseInvoker::run(*this, &inputs[0], (int)inputs.size(), buf, outputs[0], nstripes, offset);
    }

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const CV_OVERRIDE
    {
        CV_UNUSED(outputs); // suppress unused variable warning
        CV_Assert(inputs.size());

        // FIXIT: handle inputs with different number of channels
        long flops = inputs.size() * total(inputs[0]);

        return flops;
    }

    bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
    {
        Ptr<ActivationLayerInt8> activ_int8 = layer.dynamicCast<ActivationLayerInt8>();
        if (!activ_int8.empty())
        {
            activ = activ_int8;
            if (!activ_int8->blobs.empty())
                activationLUT = activ_int8->blobs[0];
            return true;
        }
        return false;
    }

    Mat activationLUT;
    Ptr<ActivationLayerInt8> activ;

private:
    bool hasVecInput;
    float offset;
};

Ptr<EltwiseLayerInt8> EltwiseLayerInt8::create(const LayerParams& params)
{
    return Ptr<EltwiseLayerInt8>(new EltwiseLayerInt8Impl(params));
}

}
}