layers_common.simd.hpp 30.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "opencv2/core/hal/intrin.hpp"

namespace cv {
namespace dnn {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN

void fastConv( const int8_t* weights, size_t wstep, const int* bias,
               const int8_t* rowbuf, int* output, const int* outShape,
               int blockSize, int vecsize, int vecsize_aligned, int outZp,
               const float* multiplier, bool initOutput, bool finalOutput );
void fastDepthwiseConv( const int8_t* wptr,
                        int kernel_h, int kernel_w,
                        int stride_h, int stride_w,
                        int dilation_h, int dilation_w,
                        int pad_t, int pad_l,
                        const int* biasptr, const float* multptr,
                        const int8_t* inptr_,
                        int height, int width,
                        int* outptr_,
                        int out_d, int outH, int outW,
                        int inpZp, int outZp );
void fastGEMM1T( const int8_t* vec, const int8_t* weights,
                 size_t wstep, const int* bias, const float* multiplier,
                 int* dst, int nvecs, int vecsize, int outZp );

#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_AVX2
#define OPENCV_FMADD_EPI8(_Tpvec, func) \
    inline _Tpvec _##func##_fmaddepi8_epi32(const _Tpvec& a, const _Tpvec& b, const _Tpvec& c) \
    { \
        _Tpvec even_a = _##func##_srai_epi16(_##func##_bslli_epi128(a, 1), 8); \
        _Tpvec odd_a  = _##func##_srai_epi16(a, 8);                            \
                                                                               \
        _Tpvec even_b = _##func##_srai_epi16(_##func##_bslli_epi128(b, 1), 8); \
        _Tpvec odd_b  = _##func##_srai_epi16(b, 8);                            \
                                                                               \
        _Tpvec prod0  = _##func##_madd_epi16(even_a, even_b);                  \
        _Tpvec prod1  = _##func##_madd_epi16(odd_a, odd_b);                    \
        return _##func##_add_epi32(_##func##_add_epi32(prod0, prod1), c);      \
    }
OPENCV_FMADD_EPI8(__m256i, mm256)
//OPENCV_FMADD_EPI8(__m512i, mm512)

enum { FASCONV_BASE_VECSZ = 4 };

void fastConv( const int8_t* weights, size_t wstep, const int* bias,
               const int8_t* rowbuf, int* output, const int* outShape,
               int blockSize, int vecsize, int vecsize_aligned, int outZp,
               const float* multiplier, bool initOutput, bool finalOutput )
{
    int outCn = outShape[1];
    size_t outPlaneSize = outShape[2]*outShape[3];
    int CV_DECL_ALIGNED(16) maskbuf[FASCONV_BASE_VECSZ] = {0};
    int rsz = blockSize % FASCONV_BASE_VECSZ;
    for( int i = 0; i < rsz; i++ )
        maskbuf[FASCONV_BASE_VECSZ - i - 1] = -1;
    __m128 mask = _mm_loadu_ps((const float*)maskbuf);

    // now compute dot product of the weights
    // and im2row-transformed part of the tensor
    for( int i = 0; i < outCn; i += 3 )
    {
        const int8_t* wptr0 = weights + i*wstep;
        const int8_t* wptr1 = wptr0 + wstep;
        const int8_t* wptr2 = wptr1 + wstep;
        int* outptr0 = output + i*outPlaneSize;
        int* outptr1 = outptr0 + outPlaneSize;
        int* outptr2 = outptr1 + outPlaneSize;
        int bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2];
        float mult0 = multiplier[i], mult1 = multiplier[i+1], mult2 = multiplier[i+2];

        if( i+2 >= outCn )
        {
            wptr2 = wptr1;
            outptr2 = outptr1;
            bias2 = bias1;
            mult2 = mult1;

            if( i+1 >= outCn )
            {
                wptr2 = wptr1 = wptr0;
                outptr2 = outptr1 = outptr0;
                bias2 = bias1 = bias0;
                mult2 = mult1 = mult0;
            }
        }
        int j = 0;
        for( ; j < blockSize; j += FASCONV_BASE_VECSZ )
        {
            bool tail = false;
            if (j + FASCONV_BASE_VECSZ > blockSize)
            {
                if (j == 0)
                    break;
                j = blockSize - FASCONV_BASE_VECSZ;
                tail = true;
            }
            int k = 0;
            const int8_t* rptr = rowbuf + j*vecsize_aligned;

            __m256i vs00 = _mm256_setzero_si256(), vs01 = _mm256_setzero_si256(),
                    vs02 = _mm256_setzero_si256(), vs03 = _mm256_setzero_si256(),
                    vs10 = _mm256_setzero_si256(), vs11 = _mm256_setzero_si256(),
                    vs12 = _mm256_setzero_si256(), vs13 = _mm256_setzero_si256(),
                    vs20 = _mm256_setzero_si256(), vs21 = _mm256_setzero_si256(),
                    vs22 = _mm256_setzero_si256(), vs23 = _mm256_setzero_si256();

            /* TODO : Fix AVX-512 path. Segmentation fault in Conv2D Tests.
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling
            if (vecsize >= 64)
            {
                __m512i vs00_5 = _mm512_setzero_si512(), vs01_5 = _mm512_setzero_si512(),
                        vs02_5 = _mm512_setzero_si512(), vs03_5 = _mm512_setzero_si512(),
                        vs10_5 = _mm512_setzero_si512(), vs11_5 = _mm512_setzero_si512(),
                        vs12_5 = _mm512_setzero_si512(), vs13_5 = _mm512_setzero_si512(),
                        vs20_5 = _mm512_setzero_si512(), vs21_5 = _mm512_setzero_si512(),
                        vs22_5 = _mm512_setzero_si512(), vs23_5 = _mm512_setzero_si512();

                for (; k <= vecsize - 64; k += 64, rptr += 64)
                {
                    __m512i w0 = _mm512_load_si512(wptr0 + k);
                    __m512i w1 = _mm512_load_si512(wptr1 + k);
                    __m512i w2 = _mm512_load_si512(wptr2 + k);
                    __m512i r0 = _mm512_load_si512(rptr);

                    vs00_5 = _mm512_fmaddepi8_epi32(w0, r0, vs00_5);
                    vs10_5 = _mm512_fmaddepi8_epi32(w1, r0, vs10_5);
                    vs20_5 = _mm512_fmaddepi8_epi32(w2, r0, vs20_5);

                    r0 = _mm512_load_si512(rptr + vecsize_aligned);
                    vs01_5 = _mm512_fmaddepi8_epi32(w0, r0, vs01_5);
                    vs11_5 = _mm512_fmaddepi8_epi32(w1, r0, vs11_5);
                    vs21_5 = _mm512_fmaddepi8_epi32(w2, r0, vs21_5);

                    r0 = _mm512_load_si512(rptr + vecsize_aligned*2);
                    vs02_5 = _mm512_fmaddepi8_epi32(w0, r0, vs02_5);
                    vs12_5 = _mm512_fmaddepi8_epi32(w1, r0, vs12_5);
                    vs22_5 = _mm512_fmaddepi8_epi32(w2, r0, vs22_5);

                    r0 = _mm512_load_si512(rptr + vecsize_aligned*3);
                    vs03_5 = _mm512_fmaddepi8_epi32(w0, r0, vs03_5);
                    vs13_5 = _mm512_fmaddepi8_epi32(w1, r0, vs13_5);
                    vs23_5 = _mm512_fmaddepi8_epi32(w2, r0, vs23_5);
                }

                // now fold the 512 bit accumulator vectors into 256 bit vectors so that the AVX2 code can finish
                // the tail of the vector

                vs00 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs00_5, 0), _mm512_extracti32x8_epi32(vs00_5, 1));
                vs10 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs10_5, 0), _mm512_extracti32x8_epi32(vs10_5, 1));
                vs20 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs20_5, 0), _mm512_extracti32x8_epi32(vs20_5, 1));

                vs01 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs01_5, 0), _mm512_extracti32x8_epi32(vs01_5, 1));
                vs11 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs11_5, 0), _mm512_extracti32x8_epi32(vs11_5, 1));
                vs21 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs21_5, 0), _mm512_extracti32x8_epi32(vs21_5, 1));

                vs02 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs02_5, 0), _mm512_extracti32x8_epi32(vs02_5, 1));
                vs12 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs12_5, 0), _mm512_extracti32x8_epi32(vs12_5, 1));
                vs22 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs22_5, 0), _mm512_extracti32x8_epi32(vs22_5, 1));

                vs03 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs03_5, 0), _mm512_extracti32x8_epi32(vs03_5, 1));
                vs13 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs13_5, 0), _mm512_extracti32x8_epi32(vs13_5, 1));
                vs23 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs23_5, 0), _mm512_extracti32x8_epi32(vs23_5, 1));
            }
#endif
            */
            for (; k < vecsize; k += 32, rptr += 32 )
            {
                __m256i w0 = _mm256_load_si256((const __m256i*)(wptr0 + k));
                __m256i w1 = _mm256_load_si256((const __m256i*)(wptr1 + k));
                __m256i w2 = _mm256_load_si256((const __m256i*)(wptr2 + k));
                __m256i r0 = _mm256_load_si256((const __m256i*)rptr);

                vs00 = _mm256_fmaddepi8_epi32(w0, r0, vs00);
                vs10 = _mm256_fmaddepi8_epi32(w1, r0, vs10);
                vs20 = _mm256_fmaddepi8_epi32(w2, r0, vs20);

                r0 = _mm256_load_si256((const __m256i*)(rptr + vecsize_aligned));
                vs01 = _mm256_fmaddepi8_epi32(w0, r0, vs01);
                vs11 = _mm256_fmaddepi8_epi32(w1, r0, vs11);
                vs21 = _mm256_fmaddepi8_epi32(w2, r0, vs21);

                r0 = _mm256_load_si256((const __m256i*)(rptr + vecsize_aligned*2));
                vs02 = _mm256_fmaddepi8_epi32(w0, r0, vs02);
                vs12 = _mm256_fmaddepi8_epi32(w1, r0, vs12);
                vs22 = _mm256_fmaddepi8_epi32(w2, r0, vs22);

                r0 = _mm256_load_si256((const __m256i*)(rptr + vecsize_aligned*3));
                vs03 = _mm256_fmaddepi8_epi32(w0, r0, vs03);
                vs13 = _mm256_fmaddepi8_epi32(w1, r0, vs13);
                vs23 = _mm256_fmaddepi8_epi32(w2, r0, vs23);
            }

            __m256i t0 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs00, vs01), _mm256_hadd_epi32(vs02, vs03));
            __m256i t1 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs10, vs11), _mm256_hadd_epi32(vs12, vs13));
            __m256i t2 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs20, vs21), _mm256_hadd_epi32(vs22, vs23));

            t0 = _mm256_add_epi32(t0, _mm256_permute2x128_si256(t0, t0, 1));
            t1 = _mm256_add_epi32(t1, _mm256_permute2x128_si256(t1, t1, 1));
            t2 = _mm256_add_epi32(t2, _mm256_permute2x128_si256(t2, t2, 1));

            __m128i s0, s1, s2;

            if( initOutput )
            {
                s0 = _mm_set1_epi32(bias0);
                s1 = _mm_set1_epi32(bias1);
                s2 = _mm_set1_epi32(bias2);
            }
            else
            {
                s0 = _mm_loadu_si128((__m128i*)(outptr0 + j));
                s1 = _mm_loadu_si128((__m128i*)(outptr1 + j));
                s2 = _mm_loadu_si128((__m128i*)(outptr2 + j));
            }

            s0 = _mm_add_epi32(s0, _mm256_castsi256_si128(t0));
            s1 = _mm_add_epi32(s1, _mm256_castsi256_si128(t1));
            s2 = _mm_add_epi32(s2, _mm256_castsi256_si128(t2));

            if( finalOutput )
            {
                __m128i voutzp = _mm_set1_epi32(outZp);
                __m128i outmin = _mm_set1_epi32(-128), outmax = _mm_set1_epi32(127);
                s0 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(s0), _mm_set1_ps(mult0))));
                s1 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(s1), _mm_set1_ps(mult1))));
                s2 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(s2), _mm_set1_ps(mult2))));

                s0 = _mm_min_epi32(_mm_max_epi32(s0, outmin), outmax);
                s1 = _mm_min_epi32(_mm_max_epi32(s1, outmin), outmax);
                s2 = _mm_min_epi32(_mm_max_epi32(s2, outmin), outmax);
            }
            if( tail )
            {
                s0 =  _mm_castps_si128(_mm_blendv_ps(_mm_loadu_ps((const float*)outptr0 + j),  _mm_castsi128_ps(s0), mask));
                s1 =  _mm_castps_si128(_mm_blendv_ps(_mm_loadu_ps((const float*)outptr1 + j),  _mm_castsi128_ps(s1), mask));
                s2 =  _mm_castps_si128(_mm_blendv_ps(_mm_loadu_ps((const float*)outptr2 + j),  _mm_castsi128_ps(s2), mask));
            }
            _mm_storeu_si128((__m128i*)(outptr0 + j), s0);
            _mm_storeu_si128((__m128i*)(outptr1 + j), s1);
            _mm_storeu_si128((__m128i*)(outptr2 + j), s2);
        }

        for( ; j <= blockSize - 2; j += 2 )
        {
            const int8_t* rptr0 = rowbuf + j*vecsize_aligned;
            const int8_t* rptr1 = rowbuf + (j+1)*vecsize_aligned;
            int s00, s01, s10, s11, s20, s21;

            if( initOutput )
            {
                s00 = s01 = bias0;
                s10 = s11 = bias1;
                s20 = s21 = bias2;
            }
            else
            {
                s00 = outptr0[j]; s01 = outptr0[j+1];
                s10 = outptr1[j]; s11 = outptr1[j+1];
                s20 = outptr2[j]; s21 = outptr2[j+1];
            }

            for( int k = 0; k < vecsize; k++ )
            {
                int8_t w0 = wptr0[k], w1 = wptr1[k], w2 = wptr2[k];
                int8_t r = rptr0[k];
                s00 += (int)w0*r; s10 += (int)w1*r; s20 += (int)w2*r;
                r = rptr1[k];
                s01 += (int)w0*r; s11 += (int)w1*r; s21 += (int)w2*r;
            }

            if( finalOutput )
            {
                s00 = std::min(std::max(outZp + (int)std::round(s00*mult0), -128), 127);
                s01 = std::min(std::max(outZp + (int)std::round(s01*mult0), -128), 127);
                s10 = std::min(std::max(outZp + (int)std::round(s10*mult1), -128), 127);
                s11 = std::min(std::max(outZp + (int)std::round(s11*mult1), -128), 127);
                s20 = std::min(std::max(outZp + (int)std::round(s20*mult2), -128), 127);
                s21 = std::min(std::max(outZp + (int)std::round(s21*mult2), -128), 127);
            }
            outptr0[j] = s00;
            outptr0[j+1] = s01;
            outptr1[j] = s10;
            outptr1[j+1] = s11;
            outptr2[j] = s20;
            outptr2[j+1] = s21;
        }

        for( ; j < blockSize; j++ )
        {
            const int8_t* rptr0 = rowbuf + j*vecsize_aligned;
            int s00, s10, s20;

            if( initOutput )
            {
                s00 = bias0;
                s10 = bias1;
                s20 = bias2;
            }
            else
            {
                s00 = outptr0[j];
                s10 = outptr1[j];
                s20 = outptr2[j];
            }

            for( int k = 0; k < vecsize; k++ )
            {
                int8_t w0 = wptr0[k], w1 = wptr1[k], w2 = wptr2[k];
                int8_t r = rptr0[k];
                s00 += (int)w0*r; s10 += (int)w1*r; s20 += (int)w2*r;
            }

            if( finalOutput )
            {
                s00 = std::min(std::max(outZp + (int)std::round(s00*mult0), -128), 127);
                s10 = std::min(std::max(outZp + (int)std::round(s10*mult1), -128), 127);
                s20 = std::min(std::max(outZp + (int)std::round(s20*mult2), -128), 127);
            }
            outptr0[j] = s00;
            outptr1[j] = s10;
            outptr2[j] = s20;
        }
    }
    _mm256_zeroupper();
}

static inline void _mm256_expand_mul_add(const __m256i& a, const __m256i& b,
                                         __m256i& out0, __m256i& out1, __m256i& out2, __m256i& out3)
{
    __m256i a0 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(a));
    __m256i a1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(a, 1));

    __m256i b0 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(b));
    __m256i b1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(b, 1));

    __m256i a0b0 = _mm256_mullo_epi16(a0, b0);
    __m256i a1b1 = _mm256_mullo_epi16(a1, b1);

    out0 = _mm256_add_epi32(out0, _mm256_cvtepi16_epi32(_mm256_castsi256_si128(a0b0)));
    out1 = _mm256_add_epi32(out1, _mm256_cvtepi16_epi32(_mm256_extracti128_si256(a0b0, 1)));
    out2 = _mm256_add_epi32(out2, _mm256_cvtepi16_epi32(_mm256_castsi256_si128(a1b1)));
    out3 = _mm256_add_epi32(out3, _mm256_cvtepi16_epi32(_mm256_extracti128_si256(a1b1, 1)));
}

static inline void _mm256_load_deinterleave(const int8_t* ptr, __m256i& a, __m256i& b)
{
    __m256i t0 = _mm256_loadu_si256((const __m256i*)ptr);
    __m256i t1 = _mm256_loadu_si256((const __m256i*)(ptr + 32));

    const __m256i sh = _mm256_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15,
                                        0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
    __m256i p0 = _mm256_shuffle_epi8(t0, sh);
    __m256i p1 = _mm256_shuffle_epi8(t1, sh);
    __m256i lo = _mm256_permute2x128_si256(p0, p1, 0 + 2*16);
    __m256i hi = _mm256_permute2x128_si256(p0, p1, 1 + 3*16);
    a = _mm256_unpacklo_epi64(lo, hi);
    b = _mm256_unpackhi_epi64(lo, hi);
}

void fastDepthwiseConv( const int8_t* wptr,
                     int kernel_h, int kernel_w,
                     int stride_h, int stride_w,
                     int dilation_h, int dilation_w,
                     int pad_t, int pad_l,
                     const int* biasptr, const float* multptr,
                     const int8_t* inptr_,
                     int height, int width,
                     int* outptr_,
                     int out_d, int outH, int outW,
                     int inpZp, int outZp)
{
    const int8_t w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
                 w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
                 w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
    int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
    float mult = multptr[out_d];
    int bias = biasptr[out_d];
    int biasCopy;

    for (int out_i = 0; out_i < outH; out_i++)
    {
        int in_i = out_i * stride_h - pad_t, out_j = 0;
        const int8_t* imgptr0 = inptr_ + in_i*width;
        const int8_t* imgptr1 = imgptr0 + dilation_h*width;
        const int8_t* imgptr2 = imgptr0 + (dilation_h*2)*width;
        int8_t w00 = w00_, w01 = w01_, w02 = w02_;
        int8_t w20 = w20_, w21 = w21_, w22 = w22_;
        int out;
        biasCopy = bias;
        if (in_i < 0)
        {
            biasCopy += inpZp * (w00 + w01 + w02);
            w00 = w01 = w02 = 0;
            imgptr0 = imgptr1;
        }
        else if (in_i + dilation_h*(kernel_h-1) >= height)
        {
            biasCopy += inpZp * (w20 + w21 + w22);
            w20 = w21 = w22 = 0;
            imgptr2 = imgptr1;
        }
        int* outptr = outptr_ + out_i*outW;
        if (pad_l > 0)
        {
            out = (int)imgptr0[0]*w01 + (int)imgptr0[dilation_w]*w02 +
                  (int)imgptr1[0]*w11 + (int)imgptr1[dilation_w]*w12 +
                  (int)imgptr2[0]*w21 + (int)imgptr2[dilation_w]*w22 +
                  biasCopy + inpZp*(w00 + w10 + w20);
            outptr[0] = std::min(std::max(outZp + (int)std::round(out*mult), -128), 127);
            out_j = 1;
        }

        if (stride_w == 1 || (stride_w == 2 && dilation_w == 1))
        {
            const int VECSZ = 32;
            __m256i vw00 = _mm256_set1_epi8(w00), vw01 = _mm256_set1_epi8(w01), vw02 = _mm256_set1_epi8(w02),
                    vw10 = _mm256_set1_epi8(w10), vw11 = _mm256_set1_epi8(w11), vw12 = _mm256_set1_epi8(w12),
                    vw20 = _mm256_set1_epi8(w20), vw21 = _mm256_set1_epi8(w21), vw22 = _mm256_set1_epi8(w22);
            __m256i vbias = _mm256_set1_epi32(biasCopy), voutzp = _mm256_set1_epi32(outZp),
                    outmin = _mm256_set1_epi32(-128), outmax = _mm256_set1_epi32(127);
            __m256 vmult = _mm256_set1_ps(mult);
            __m256i vout0, vout1, vout2, vout3;

            if( stride_w == 1 )
            {
                for( ; out_j < outW1; out_j += VECSZ )
                {
                    if (out_j + VECSZ > outW1)
                    {
                        if (out_j <= pad_l)
                            break;
                        out_j = outW1 - VECSZ;
                    }
                    int in_j = out_j * stride_w - pad_l;
                    __m256i v00 = _mm256_loadu_si256((const __m256i*)(imgptr0 + in_j)),
                            v01 = _mm256_loadu_si256((const __m256i*)(imgptr0 + in_j + dilation_w)),
                            v02 = _mm256_loadu_si256((const __m256i*)(imgptr0 + in_j + dilation_w*2)),
                            v10 = _mm256_loadu_si256((const __m256i*)(imgptr1 + in_j)),
                            v11 = _mm256_loadu_si256((const __m256i*)(imgptr1 + in_j + dilation_w)),
                            v12 = _mm256_loadu_si256((const __m256i*)(imgptr1 + in_j + dilation_w*2)),
                            v20 = _mm256_loadu_si256((const __m256i*)(imgptr2 + in_j)),
                            v21 = _mm256_loadu_si256((const __m256i*)(imgptr2 + in_j + dilation_w)),
                            v22 = _mm256_loadu_si256((const __m256i*)(imgptr2 + in_j + dilation_w*2));

                    vout0 = vout1 = vout2 = vout3 = vbias;
                    _mm256_expand_mul_add(v00, vw00, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v01, vw01, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v02, vw02, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v10, vw10, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v11, vw11, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v12, vw12, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v20, vw20, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v21, vw21, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v22, vw22, vout0, vout1, vout2, vout3);

                    vout0 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout0), vmult)));
                    vout1 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout1), vmult)));
                    vout2 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout2), vmult)));
                    vout3 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout3), vmult)));

                    vout0 = _mm256_min_epi32(_mm256_max_epi32(vout0, outmin), outmax);
                    vout1 = _mm256_min_epi32(_mm256_max_epi32(vout1, outmin), outmax);
                    vout2 = _mm256_min_epi32(_mm256_max_epi32(vout2, outmin), outmax);
                    vout3 = _mm256_min_epi32(_mm256_max_epi32(vout3, outmin), outmax);

                    _mm256_storeu_si256((__m256i*)(outptr + out_j), vout0);
                    _mm256_storeu_si256((__m256i*)(outptr + out_j + 8), vout1);
                    _mm256_storeu_si256((__m256i*)(outptr + out_j + 16), vout2);
                    _mm256_storeu_si256((__m256i*)(outptr + out_j + 24), vout3);
                }
            }
            else
            {
                for( ; out_j < outW1; out_j += VECSZ )
                {
                    if (out_j + VECSZ > outW1)
                    {
                        if (out_j <= pad_l)
                            break;
                        out_j = outW1 - VECSZ;
                    }
                    int in_j = out_j * stride_w - pad_l;
                    __m256i v00, v01, v02, v10, v11, v12, v20, v21, v22, unused;
                    _mm256_load_deinterleave(imgptr0 + in_j, v00, v01);
                    _mm256_load_deinterleave(imgptr0 + in_j + 2, v02, unused);
                    _mm256_load_deinterleave(imgptr1 + in_j, v10, v11);
                    _mm256_load_deinterleave(imgptr1 + in_j + 2, v12, unused);
                    _mm256_load_deinterleave(imgptr2 + in_j, v20, v21);
                    _mm256_load_deinterleave(imgptr2 + in_j + 2, v22, unused);

                    vout0 = vout1 = vout2 = vout3 = vbias;
                    _mm256_expand_mul_add(v00, vw00, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v01, vw01, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v02, vw02, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v10, vw10, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v11, vw11, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v12, vw12, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v20, vw20, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v21, vw21, vout0, vout1, vout2, vout3);
                    _mm256_expand_mul_add(v22, vw22, vout0, vout1, vout2, vout3);

                    vout0 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout0), vmult)));
                    vout1 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout1), vmult)));
                    vout2 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout2), vmult)));
                    vout3 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout3), vmult)));

                    vout0 = _mm256_min_epi32(_mm256_max_epi32(vout0, outmin), outmax);
                    vout1 = _mm256_min_epi32(_mm256_max_epi32(vout1, outmin), outmax);
                    vout2 = _mm256_min_epi32(_mm256_max_epi32(vout2, outmin), outmax);
                    vout3 = _mm256_min_epi32(_mm256_max_epi32(vout3, outmin), outmax);

                    _mm256_storeu_si256((__m256i*)(outptr + out_j), vout0);
                    _mm256_storeu_si256((__m256i*)(outptr + out_j + 8), vout1);
                    _mm256_storeu_si256((__m256i*)(outptr + out_j + 16), vout2);
                    _mm256_storeu_si256((__m256i*)(outptr + out_j + 24), vout3);
                }
            }
        }

        for (; out_j < outW1; out_j++)
        {
            int in_j = out_j * stride_w - pad_l;
            out = (int)imgptr0[in_j]*w00 + (int)imgptr0[in_j + dilation_w]*w01 + (int)imgptr0[in_j + dilation_w*2]*w02 +
                  (int)imgptr1[in_j]*w10 + (int)imgptr1[in_j + dilation_w]*w11 + (int)imgptr1[in_j + dilation_w*2]*w12 +
                  (int)imgptr2[in_j]*w20 + (int)imgptr2[in_j + dilation_w]*w21 + (int)imgptr2[in_j + dilation_w*2]*w22 + biasCopy;
            outptr[out_j] = std::min(std::max(outZp + (int)std::round(out*mult), -128), 127);
        }

        for (; out_j < outW; out_j++ )
        {
            int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
            int s0 = 1, s1 = 1, s2 = 1;
            if (in_j0 >= width)
            {
                in_j0 = 0;
                s0 = 0;
                biasCopy += inpZp*(w00 + w10 + w20);
            }
            if (in_j1 >= width)
            {
                in_j1 = 0;
                s1 = 0;
                biasCopy += inpZp*(w01 + w11 + w21);
            }
            if (in_j2 >= width)
            {
                in_j2 = 0;
                s2 = 0;
                biasCopy += inpZp*(w02 + w12 + w22);
            }
            out = (int)imgptr0[in_j0]*w00*s0 + (int)imgptr0[in_j1]*w01*s1 + (int)imgptr0[in_j2]*w02*s2 +
                  (int)imgptr1[in_j0]*w10*s0 + (int)imgptr1[in_j1]*w11*s1 + (int)imgptr1[in_j2]*w12*s2 +
                  (int)imgptr2[in_j0]*w20*s0 + (int)imgptr2[in_j1]*w21*s1 + (int)imgptr2[in_j2]*w22*s2 + biasCopy;
            outptr[out_j] = std::min(std::max(outZp + (int)std::round(out*mult), -128), 127);
        }
    }
    _mm256_zeroupper();
}

// dst = vec * weights^t + bias
void fastGEMM1T( const int8_t* vec, const int8_t* weights,
                 size_t wstep, const int* bias, const float* multiplier,
                 int* dst, int nvecs, int vecsize, int outZp )
{
    int i = 0;

    for( ; i <= nvecs - 8; i += 8 )
    {
        const int8_t* wptr = weights + i*wstep;
        __m256i vs0 = _mm256_setzero_si256(), vs1 = _mm256_setzero_si256(),
                vs2 = _mm256_setzero_si256(), vs3 = _mm256_setzero_si256(),
                vs4 = _mm256_setzero_si256(), vs5 = _mm256_setzero_si256(),
                vs6 = _mm256_setzero_si256(), vs7 = _mm256_setzero_si256();

        __m128i voutzp = _mm_set1_epi32(outZp);
        __m128i outmin = _mm_set1_epi32(-128), outmax = _mm_set1_epi32(127);

        for( int k = 0; k < vecsize; k += 32, wptr += 32 )
        {
            __m256i v = _mm256_load_si256((const __m256i*)(vec + k));

            vs0 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)wptr), v, vs0);
            vs1 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep)), v, vs1);
            vs2 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*2)), v, vs2);
            vs3 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*3)), v, vs3);
            vs4 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*4)), v, vs4);
            vs5 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*5)), v, vs5);
            vs6 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*6)), v, vs6);
            vs7 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*7)), v, vs7);
        }

        __m256i s0 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs0, vs1), _mm256_hadd_epi32(vs2, vs3));
        __m256i s1 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs4, vs5), _mm256_hadd_epi32(vs6, vs7));

        s0 = _mm256_add_epi32(s0, _mm256_permute2x128_si256(s0, s0, 1));
        s1 = _mm256_add_epi32(s1, _mm256_permute2x128_si256(s1, s1, 1));

        __m128i t0 = _mm_add_epi32(_mm256_castsi256_si128(s0), _mm_loadu_si128((__m128i*)(bias + i)));
        __m128i t1 = _mm_add_epi32(_mm256_castsi256_si128(s1), _mm_loadu_si128((__m128i*)(bias + i + 4)));

        t0 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(t0), _mm_loadu_ps(multiplier + i))));
        t1 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(t1), _mm_loadu_ps(multiplier + i + 4))));

        t0 = _mm_min_epi32(_mm_max_epi32(t0, outmin), outmax);
        t1 = _mm_min_epi32(_mm_max_epi32(t1, outmin), outmax);

        _mm_storeu_si128((__m128i*)(dst + i), t0);
        _mm_storeu_si128((__m128i*)(dst + i + 4), t1);
    }

    for( ; i < nvecs; i++ )
    {
        const int8_t* wptr = weights + i*wstep;
        __m256i vs0 = _mm256_setzero_si256();

        for( int k = 0; k < vecsize; k += 32, wptr += 32 )
        {
            __m256i v = _mm256_load_si256((const __m256i*)(vec + k));
            vs0 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)wptr), v, vs0);
        }

        __m256i s0 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs0, vs0), vs0);
        s0 = _mm256_add_epi32(s0, _mm256_permute2x128_si256(s0, s0, 1));
        int temp = _mm_extract_epi32(_mm256_castsi256_si128(s0), 0);
        dst[i] = outZp + (int)std::round((temp + bias[i]) * multiplier[i]);
    }

    _mm256_zeroupper();
}
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY

CV_CPU_OPTIMIZATION_NAMESPACE_END
}} // namespace