pooling_layer.cpp
25.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <float.h>
#include <algorithm>
#include <numeric>
using std::max;
using std::min;
namespace cv
{
namespace dnn
{
class PoolingLayerInt8Impl CV_FINAL : public PoolingLayerInt8
{
public:
PoolingLayerInt8Impl(const LayerParams& params)
{
computeMaxIdx = false;
globalPooling = false;
isGlobalPooling = std::vector<bool>(3, false);
output_zp = params.get<int>("zeropoints");
input_zp = params.get<int>("input_zeropoint", 0);
multiplier = params.get<float>("multiplier", 1.f);
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
shapesInitialized = !hasDynamicShapes;
if (params.has("pool") || params.has("kernel_size") ||
params.has("kernel_w") || params.has("kernel_h"))
{
String pool = toLowerCase(params.get<String>("pool", "max"));
if (pool == "max")
type = MAX;
else if (pool == "ave")
type = AVE;
else if (pool == "sum")
type = SUM;
else
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
getPoolingKernelParams(params, kernel_size, isGlobalPooling, pads_begin, pads_end, strides, padMode);
globalPooling = isGlobalPooling[0] || isGlobalPooling[1] || isGlobalPooling[2];
}
else
CV_Error(Error::StsBadArg, "Cannot determine pooling type");
setParamsFrom(params);
ceilMode = params.get<bool>("ceil_mode", true);
spatialScale = params.get<float>("spatial_scale", 1);
avePoolPaddedArea = params.get<bool>("ave_pool_padded_area", true);
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(!inputs.empty());
CV_Assert(outputs.size() == 1);
std::vector<int> inp;
std::vector<int> out;
for (int i = 2; i < inputs[0].dims; i++) {
inp.push_back(inputs[0].size[i]);
out.push_back(outputs[0].size[i]);
}
if (globalPooling) {
std::vector<size_t> finalKernel;
for (int i = 0; i < inp.size(); i++) {
int idx = isGlobalPooling.size() - inp.size() + i;
finalKernel.push_back(isGlobalPooling[idx] ? inp[i] : kernel_size[idx]);
}
kernel_size = finalKernel;
}
getConvPoolPaddings(inp, kernel_size, strides, padMode, pads_begin, pads_end);
if (inputs[0].dims == 3)
{
// Pool1D
kernel_size.assign(1, kernel_size[0]);
strides.assign(1, strides[0]);
pads_begin.assign(1, pads_begin[0]);
pads_end.assign(1, pads_end[0]);
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
if (backendId == DNN_BACKEND_OPENCV)
{
if (kernel_size.size() == 3)
return preferableTarget == DNN_TARGET_CPU;
if (kernel_size.size() <= 2)
return true;
else
return false;
}
return false;
}
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
Ptr<ActivationLayerInt8> activ_int8 = layer.dynamicCast<ActivationLayerInt8>();
if (!activ_int8.empty())
{
return activ_int8->blobs.empty();
}
return false;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
switch (type)
{
case MAX:
{
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
maxPooling(inputs[0], outputs[0]);
break;
}
case AVE: case SUM:
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
avePooling(inputs[0], outputs[0]);
break;
default:
CV_Error(Error::StsNotImplemented, "Not implemented");
break;
}
}
class PoolingInvoker : public ParallelLoopBody
{
public:
const Mat* src, *rois;
Mat *dst;
int pad_l, pad_t, pad_r, pad_b;
bool avePoolPaddedArea;
int nstripes, inpZp, outZp;
std::vector<int> ofsbuf;
int poolingType;
float multiplier;
float spatialScale;
std::vector<size_t> pads_begin, pads_end;
std::vector<size_t> kernel_size;
std::vector<size_t> strides;
PoolingInvoker() : src(0), rois(0), dst(0), pad_l(0), pad_t(0), pad_r(0), pad_b(0),
avePoolPaddedArea(false), nstripes(0), inpZp(0), outZp(0),
poolingType(MAX), multiplier(1), spatialScale(0){}
static void run(const Mat& src, const Mat& rois, Mat& dst,
std::vector<size_t> kernel_size, std::vector<size_t> strides,
std::vector<size_t> pads_begin, std::vector<size_t> pads_end,
bool avePoolPaddedArea, int poolingType, float spatialScale,
float multiplier, int inpZp, int outZp, int nstripes)
{
CV_Assert_N(
src.isContinuous(), dst.isContinuous(),
src.type() == CV_8S, src.type() == dst.type(),
src.dims == 3 || src.dims == 4 || src.dims == 5, dst.dims == 3 || dst.dims == 4 || dst.dims == 5,
src.size[0] == dst.size[0], src.size[1] == dst.size[1], rois.empty());
PoolingInvoker p;
bool isPool1D = src.dims == 3;
bool isPool3D = src.dims == 5;
p.src = &src;
p.rois = &rois;
p.dst = &dst;
p.kernel_size = kernel_size;
p.strides = strides;
p.pads_begin = pads_begin;
p.pads_end = pads_end;
p.pad_l = pads_begin.back();
p.pad_t = isPool1D ? 0 : pads_begin[pads_begin.size() - 2];
p.pad_r = pads_end.back();
p.pad_b = isPool1D ? 0 : pads_end[pads_end.size() - 2];
p.avePoolPaddedArea = avePoolPaddedArea;
p.nstripes = nstripes;
p.inpZp = inpZp;
p.outZp = outZp;
p.poolingType = poolingType;
p.spatialScale = spatialScale;
p.multiplier = multiplier;
int height = isPool1D ? 1 : src.size[src.dims - 2];
int width = src.size[src.dims - 1];
int kernel_d = isPool3D ? kernel_size[0] : 1;
int kernel_h = isPool1D ? 1 : kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
p.ofsbuf.resize(kernel_d * kernel_h * kernel_w);
for (int i = 0; i < kernel_d; ++i) {
for (int j = 0; j < kernel_h; ++j) {
for (int k = 0; k < kernel_w; ++k) {
p.ofsbuf[i * kernel_h * kernel_w + j * kernel_w + k] = width * height * i + width * j + k;
}
}
}
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
int channels = dst->size[1];
bool isPool3D = src->dims == 5;
bool isPool2D = src->dims == 4;
bool isPool1D = src->dims == 3;
int depth = isPool3D? dst->size[2] : 1;
int height = isPool1D? 1 : dst->size[dst->dims - 2];
int width = dst->size[dst->dims - 1];
int inp_depth = isPool3D? src->size[2] : 1;
int inp_height = isPool1D? 1 : src->size[src->dims - 2];
int inp_width = src->size[src->dims - 1];
size_t total = dst->total();
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
int kernel_d = isPool3D? kernel_size[0] : 1;
int kernel_h = isPool1D? 1 : kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
int stride_d = isPool3D? strides[0] : 0;
int stride_h = isPool1D? 1 :strides[strides.size() - 2];
int stride_w = strides.back();
#if CV_SIMD128
const int* ofsptr = (const int*)&ofsbuf[0];
if (poolingType == MAX && !ofsptr)
CV_Error(Error::StsBadArg, "ofsbuf should be initialized in this mode");
#endif
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ofs = ofs0;
int x0 = (int)(ofs % width);
ofs /= width;
int y0 = (int)(ofs % height);
ofs /= height;
int d0 = (int)(ofs % depth);
ofs /= depth;
int c = (int)(ofs % channels);
int n = (int)(ofs / channels);
int ystart, yend;
int dstart = 0, dend = 1;
const int8_t *srcData = 0;
int pad_d_begin = (pads_begin.size() == 3) ? pads_begin[0] : 0;
dstart = d0 * stride_d - pad_d_begin;
dend = min(dstart + kernel_d, (int)(inp_depth + pads_end[0]));
ystart = y0 * stride_h - pad_t;
yend = min(ystart + kernel_h, inp_height + pad_b);
srcData = src->ptr<int8_t>(n, c);
int ddelta = dend - dstart;
dstart = max(dstart, 0);
dend = min(dend, inp_depth);
int ydelta = yend - ystart;
ystart = max(ystart, 0);
yend = min(yend, inp_height);
int8_t *dstData = &dst->ptr<int8_t>(n, c, d0)[y0 * width];
int delta = std::min((int)(stripeEnd - ofs0), width - x0);
ofs0 += delta;
int x1 = x0 + delta;
if( poolingType == MAX )
for( ; x0 < x1; x0++ )
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width);
xstart = max(xstart, 0);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = (int8_t)outZp;
continue;
}
#if CV_SIMD128
if( isPool2D && xstart > 0 && x0 + 15 < x1 && (x0 + 15) * stride_w - pad_l + kernel_w < inp_width )
{
v_int8x16 max_val0 = v_setall_s8(-128);
if( yend - ystart == kernel_h )
{
const int8_t* srcData1 = srcData + ystart*inp_width + xstart;
if( stride_w == 1 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_int8x16 v0 = v_load(srcData1 + index);
max_val0 = v_max(max_val0, v0);
}
else if( stride_w == 2 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_int8x16 v0, dummy;
v_load_deinterleave(srcData1 + index, v0, dummy);
max_val0 = v_max(max_val0, v0);
}
else
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_int8x16 v0(srcData1[index], srcData1[index + stride_w],
srcData1[index + stride_w*2], srcData1[index + stride_w*3],
srcData1[index + stride_w*4], srcData1[index + stride_w*5],
srcData1[index + stride_w*6], srcData1[index + stride_w*7],
srcData1[index + stride_w*8], srcData1[index + stride_w*9],
srcData1[index + stride_w*10], srcData1[index + stride_w*11],
srcData1[index + stride_w*12], srcData1[index + stride_w*13],
srcData1[index + stride_w*14], srcData1[index + stride_w*15]);
max_val0 = v_max(max_val0, v0);
}
}
else
{
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_int8x16 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3],
srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7],
srcData[index + stride_w*8], srcData[index + stride_w*9],
srcData[index + stride_w*10], srcData[index + stride_w*11],
srcData[index + stride_w*12], srcData[index + stride_w*13],
srcData[index + stride_w*14], srcData[index + stride_w*15]);
max_val0 = v_max(max_val0, v0);
}
}
}
v_store(dstData + x0, max_val0);
x0 += 15;
}
else
#else
CV_UNUSED(isPool2D);
#endif
if( isPool1D )
{
const int8_t* first = srcData + xstart;
const int8_t* last = srcData + xend;
const int8_t* max_elem = std::max_element(first, last);
if (max_elem != last)
dstData[x0] = *max_elem;
}
else
{
int8_t max_val = -128;
for (int d = dstart; d < dend; ++d) {
for (int y = ystart; y < yend; ++y) {
for (int x = xstart; x < xend; ++x) {
const int index = d * inp_width * inp_height + y * inp_width + x;
int8_t val = srcData[index];
max_val = std::max(max_val, val);
}
}
}
dstData[x0] = max_val;
}
}
else if (poolingType == AVE || poolingType == SUM)
{
for( ; x0 < x1; ++x0)
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width + pad_r);
int xdelta = xend - xstart;
xstart = max(xstart, 0);
xend = min(xend, inp_width);
int real_kernel_area = (dend - dstart) * (yend - ystart) * (xend - xstart);
int padded_kernel_area = xdelta * ydelta * ddelta;
int kernel_area = avePoolPaddedArea ? padded_kernel_area : real_kernel_area;
int bias = (avePoolPaddedArea ? (padded_kernel_area - real_kernel_area) * inpZp : 0)
- (inpZp * kernel_area);
float inv_kernel_area = poolingType == AVE ? multiplier / kernel_area : multiplier;
#if CV_SIMD128
if( isPool2D && xstart > 0 && x0 + 15 < x1 && (x0 + 15) * stride_w - pad_l + kernel_w < inp_width )
{
v_int32x4 sum_val0 = v_setall_s32(bias), sum_val1 = v_setall_s32(bias),
sum_val2 = v_setall_s32(bias), sum_val3 = v_setall_s32(bias),
voutzp = v_setall_s32(outZp);
v_float32x4 ikarea = v_setall_f32(inv_kernel_area);
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_int32x4 v0((int)srcData[index], (int)srcData[index + stride_w],
(int)srcData[index + stride_w*2], (int)srcData[index + stride_w*3]);
v_int32x4 v1((int)srcData[index + stride_w*4], (int)srcData[index + stride_w*5],
(int)srcData[index + stride_w*6], (int)srcData[index + stride_w*7]);
v_int32x4 v2((int)srcData[index + stride_w*8], (int)srcData[index + stride_w*9],
(int)srcData[index + stride_w*10], (int)srcData[index + stride_w*11]);
v_int32x4 v3((int)srcData[index + stride_w*12], (int)srcData[index + stride_w*13],
(int)srcData[index + stride_w*14], (int)srcData[index + stride_w*15]);
sum_val0 += v0;
sum_val1 += v1;
sum_val2 += v2;
sum_val3 += v3;
}
}
sum_val0 = v_round(v_cvt_f32(sum_val0)*ikarea) + voutzp;
sum_val1 = v_round(v_cvt_f32(sum_val1)*ikarea) + voutzp;
sum_val2 = v_round(v_cvt_f32(sum_val2)*ikarea) + voutzp;
sum_val3 = v_round(v_cvt_f32(sum_val3)*ikarea) + voutzp;
v_store(dstData + x0, v_pack(v_pack(sum_val0, sum_val1), v_pack(sum_val2, sum_val3)));
x0 += 15;
}
else
#endif
if( isPool1D )
{
const int8_t* first = srcData + xstart;
const int8_t* last = srcData + xend;
int sum_val = bias + std::accumulate(first, last, 0);
dstData[x0] = saturate_cast<int8_t>(outZp + std::round(sum_val*inv_kernel_area));
}
else
{
int sum_val = bias;
for (int d = dstart; d < dend; ++d) {
for (int y = ystart; y < yend; ++y) {
for (int x = xstart; x < xend; ++x) {
const int index = d * inp_width * inp_height + y * inp_width + x;
int8_t val = srcData[index];
sum_val += (int)val;
}
}
}
dstData[x0] = saturate_cast<int8_t>(outZp + std::round(sum_val*inv_kernel_area));
}
}
}
}
}
};
void maxPooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type,
spatialScale, multiplier, input_zp, output_zp, nstripes);
}
void avePooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type,
spatialScale, multiplier, input_zp, output_zp, nstripes);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() != 0);
bool isPool1D = inputs[0].size() == 3;
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
std::vector<int> outShape(inputs[0].begin(), inputs[0].begin() + 2);
std::vector<size_t> local_kernel;
if (globalPooling) {
for (int i = 0; i < inpShape.size(); i++) {
int idx = isGlobalPooling.size() - inpShape.size() + i;
local_kernel.push_back(isGlobalPooling[idx] ? inpShape[i] : kernel_size[idx]);
}
} else {
local_kernel = kernel_size;
}
if (hasDynamicShapes && !shapesInitialized)
{
//Just copy input shapes for width and height to prevent errors on loading stage
for (int i = 0; i < inpShape.size(); i++)
outShape.push_back(inpShape[i]);
}
else if (padMode.empty())
{
int addedDims = isPool1D? inpShape.size() : local_kernel.size();
for (int i = 0; i < addedDims; i++) {
float dst = (float) (inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
}
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
for (int i = 0; i < addedDims; i++) {
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
--outShape[2 + i];
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
}
}
}
else {
getConvPoolOutParams(inpShape, local_kernel, strides, padMode,
std::vector<size_t>(local_kernel.size(), 1), outShape);
}
outputs.assign(1, outShape);
return false;
}
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
{
int dims = inputs[0].size();
CV_Assert(inputs[0][dims - 1] > 0 && inputs[0][dims - 2] > 0);
shapesInitialized = true;
return true;
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
bool isPool1D = inputs[0].size() == 3;
size_t karea = std::accumulate(kernel_size.begin(), isPool1D? kernel_size.begin() + 1 : kernel_size.end(),
1, std::multiplies<size_t>());
for(int i = 0; i < outputs.size(); i++)
{
if (type == MAX)
{
if (i%2 == 0)
flops += total(outputs[i])*karea;
}
else
{
flops += total(outputs[i])*(karea + 1);
}
}
return flops;
}
private:
enum Type
{
MAX,
AVE,
STOCHASTIC,
SUM,
ROI, // RoI pooling, https://arxiv.org/pdf/1504.08083.pdf
PSROI // Position-sensitive RoI pooling, https://arxiv.org/pdf/1605.06409.pdf
};
bool hasDynamicShapes;
bool shapesInitialized;
float multiplier;
};
Ptr<PoolingLayerInt8> PoolingLayerInt8::create(const LayerParams& params)
{
return Ptr<PoolingLayerInt8>(new PoolingLayerInt8Impl(params));
}
}
}