op_cuda.hpp 23 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#ifndef OPENCV_DNN_SRC_OP_CUDA_HPP
#define OPENCV_DNN_SRC_OP_CUDA_HPP

#ifdef HAVE_CUDA
#include "cuda4dnn/csl/stream.hpp"
#include "cuda4dnn/csl/event.hpp"
#include "cuda4dnn/csl/cublas.hpp"
#include "cuda4dnn/csl/cudnn.hpp"
#include "cuda4dnn/csl/tensor.hpp"
#include "cuda4dnn/csl/memory.hpp"
#include "cuda4dnn/csl/workspace.hpp"
#include "cuda4dnn/kernels/fp_conversion.hpp"
#endif

#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core.hpp>

#include <cstddef>
#include <memory>
#include <iterator>

namespace cv { namespace dnn {

    constexpr bool IS_DNN_CUDA_TARGET(int id) {
        return id == DNN_TARGET_CUDA_FP16 || id == DNN_TARGET_CUDA;
    }

    constexpr bool haveCUDA() {
#ifdef HAVE_CUDA
        return true;
#else
        return false;
#endif
    }

#ifdef HAVE_CUDA
    namespace cuda4dnn { namespace csl {
        struct CSLContext {
            Stream stream;
            cublas::Handle cublas_handle;
            cudnn::Handle cudnn_handle;
        };

        /** @brief creates Tensor object from cv::Mat (only the header is created, i.e. no data is copied)
         *
         * \tparam      T   element type for the tensor
         * \param[in]   mat cv::Mat from which the shape must be inferred
         *
         * \return a Tensor object with the shape of \p mat
         */
        template <class T>
        Tensor<T> makeTensorHeader(const Mat& mat) {
            auto sizes = shape(mat);
            return Tensor<T>(std::begin(sizes), std::end(sizes));
        }

        /** @brief copies data from a cv::Mat to TensorType
         *
         * \tparam  T   the type of the elements contained in TensorType object
         *
         * \param[in]   srcMat      source matrix
         * \param[out]  destTensor  destination tensor
         * \param       stream      CUDA stream to use for the memory transfer
         *
         * The memory copy starts from beginning \p srcMat. The number of elements copied is
         * equal to the number of elements in \p destTensor.
         *
         * Pre-conditions:
         * - \p srcMat must contain elements of type CV_32F
         * - the size of \p srcMat must be larger than or equal to the size of \p destTensor
         *
         * @note best performance when \p srcMat is continuous and page-locked
         * @note blocks calling thread if \p srcMat is not page-locked
         */
        template <class T>
        void copyMatToTensor(const Mat& srcMat, const TensorSpan<T> destTensor, const Stream& stream);

        template <> inline
        void copyMatToTensor(const Mat& srcMat, const TensorSpan<half> destTensor, const Stream& stream) {
            /* should perhaps convert cv::Mat of different type to the required type and copy */
            CV_Assert(srcMat.type() == CV_32F);
            CV_Assert(srcMat.total() >= destTensor.size());

            Mat temp;
            srcMat.convertTo(temp, CV_16F);
            CV_Assert(temp.isContinuous());

            memcpy<half>(destTensor.get(), reinterpret_cast<half*>(temp.data), destTensor.size(), stream);
        }

        template <> inline
        void copyMatToTensor(const Mat& srcMat, const TensorSpan<float> destTensor, const Stream& stream) {
            /* should perhaps convert cv::Mat of different type to the required type and copy */
            CV_Assert(srcMat.type() == CV_32F);
            CV_Assert(srcMat.total() >= destTensor.size());

            Mat temp = srcMat.isContinuous() ? srcMat : srcMat.clone();
            CV_Assert(temp.isContinuous());

            memcpy<float>(destTensor.get(), reinterpret_cast<float*>(temp.data), destTensor.size(), stream);
        }

        /** @brief copies data from a TensorType to a cv::Mat
         *
         * \tparam  T   the type of the elements contained in TensorType object
         *
         * \param[in]   srcTensor   source tensor
         * \param[out]  destMat     destination matrix
         * \param       stream      CUDA stream to use for the memory transfer
         *
         * The entire memory block held by the \p srcTensor is copied to \p destMat.
         *
         * Pre-conditions:
         * - \p destMat must contain elements of type CV_32F
         * - the size of \p destMat must be larger than or equal to the size of \p srcTensor
         *
         * @note best performance when \p destMat is continuous and page-locked
         * @note blocks calling thread if \p destMat is not page-locked
         */
        template <class T>
        void copyTensorToMat(TensorView<T> srcTensor, Mat& destMat, const Stream& stream);

        template <> inline
        void copyTensorToMat(TensorView<half> srcTensor, Mat& destMat, const Stream& stream) {
            CV_Assert(destMat.type() == CV_32F);
            CV_Assert(destMat.total() >= srcTensor.size());

            Mat temp(shape(destMat), CV_16F);
            CV_Assert(temp.isContinuous());

            memcpy<half>(reinterpret_cast<half*>(temp.data), srcTensor.get(), srcTensor.size(), stream);

            temp.convertTo(destMat, CV_32F);
        }

        template <> inline
        void copyTensorToMat(TensorView<float> srcTensor, Mat& destMat, const Stream& stream) {
            CV_Assert(destMat.type() == CV_32F);
            CV_Assert(destMat.total() >= srcTensor.size());

            Mat temp = destMat.isContinuous() ? destMat : destMat.clone();
            CV_Assert(temp.isContinuous());

            memcpy<float>(reinterpret_cast<float*>(temp.data), srcTensor.get(), srcTensor.size(), stream);

            if (temp.data != destMat.data)
                temp.copyTo(destMat);
        }
    }} /* namespace cuda4dnn::csl */

    /** base class for CUDA operation nodes (for all supported targets) */
    class CUDABackendNode : public BackendNode {
    public:
        CUDABackendNode() : BackendNode(DNN_BACKEND_CUDA) { }
        virtual ~CUDABackendNode() { }

        virtual void forward(
            const std::vector<cv::Ptr<BackendWrapper>>& inputs,
            const std::vector<cv::Ptr<BackendWrapper>>& outputs,
            cuda4dnn::csl::Workspace& workspace) = 0;

        virtual std::size_t get_workspace_memory_in_bytes() const noexcept { return 0; }
    };

    /** @brief utility function which creates CUDA node of correct type from `targetId`
     *
     * CUDA operation nodes take the type of data they operate on as a template parameter.
     * For example, ConcatOp<float> is an operation node which concats tensors of `float` type
     * into a tensor of `float` type.
     *
     * This utility function aids the creation of nodes of different types and eliminates the
     * need for CUDA target constants (`DNN_TARGET_XXX`) to appear in the operation code which
     * reduces coupling between modules.
     *
     * Example:
     * template <class T>
     * class ConcatOp : public CUDABackendNode;
     *
     * // returns a cv::Ptr to a ConcatOp<half> object
     * auto node = make_cuda_node<ConcatOp>(DNN_TARGET_CUDA_FP16, axis);
     *
     * // returns a cv::Ptr to a ConcatOp<float> object
     * auto node = make_cuda_node<ConcatOp>(DNN_TARGET_CUDA, axis);
     */
    template <template <class> class NodeType, class ...Args>
    cv::Ptr<BackendNode> make_cuda_node(int targetId, Args&& ...args) {
        switch (targetId)
        {
        case DNN_TARGET_CUDA_FP16:
            return Ptr<BackendNode>(new NodeType<half>(std::forward<Args>(args)...));
        case DNN_TARGET_CUDA:
            return Ptr<BackendNode>(new NodeType<float>(std::forward<Args>(args)...));
        default:
            CV_Assert(IS_DNN_CUDA_TARGET(targetId));
        }
        return Ptr<BackendNode>();
    }

    /* base class for all CUDA backend/target wrappers */
    class CUDABackendWrapper : public BackendWrapper {
    public:
        CUDABackendWrapper(int targetId) : BackendWrapper(DNN_BACKEND_CUDA, targetId) { }
        virtual ~CUDABackendWrapper() { }

        void copyToHost() override = 0;
        virtual void copyToHostInBackground() = 0;
        void setHostDirty() override = 0;

        virtual void copyToDevice() = 0;
        virtual void setDeviceDirty() = 0;

        virtual MatShape getShape() const noexcept = 0;
        virtual std::size_t getRank() const noexcept = 0;

        /** @note setting the stream updates the stream for all wrappers which use the same tensor */
        virtual void setStream(cuda4dnn::csl::Stream stream, cuda4dnn::csl::Stream h2d_stream) noexcept = 0;

        virtual void update(const MatShape& shape, std::size_t offset) = 0;
    };

    namespace cuda4dnn { namespace detail {

        template <class U>
        void convert_D2H(const cv::Mat& mat, cuda4dnn::csl::View<U> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream);

        template <> inline
        void convert_D2H<half>(const cv::Mat& mat, cuda4dnn::csl::View<half> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
            if (device_temp.size() < view.size())
                device_temp.reset(view.size());
            auto temp_span = cuda4dnn::csl::Span<float>(device_temp.get(), view.size());

            cuda4dnn::kernels::fp16_to_fp32(stream, temp_span, view);
            cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), temp_span.data(), view.size(), stream);
        }

        template <> inline
        void convert_D2H<float>(const cv::Mat& mat, cuda4dnn::csl::View<float> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
            cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), view.data(), view.size(), stream);
        }

        template <class U>
        void convert_D2H_background(const cv::Mat& mat, cuda4dnn::csl::View<U> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream, const cuda4dnn::csl::Stream& d2h_stream, cuda4dnn::csl::Event& d2h_event);

        template <> inline
        void convert_D2H_background<half>(const cv::Mat& mat, cuda4dnn::csl::View<half> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream, const cuda4dnn::csl::Stream& d2h_stream, cuda4dnn::csl::Event& d2h_event) {
            if (device_temp.size() < view.size())
                device_temp.reset(view.size());
            auto temp_span = cuda4dnn::csl::Span<float>(device_temp.get(), view.size());

            /* The conversion kernel should can be executed in the background stream for better
             * performance. We do it in the inference stream to prevent an unexplained performance
             * regression on RTX 2080 Ti. Executing conversion kernel in the background stream causes
             * everything to slow down (even operations that appear before the background transfer).
             *
             * TODO: identify the cause and move conversion kernel to the background stream
             */
            cuda4dnn::kernels::fp16_to_fp32(stream, temp_span, view);

            d2h_event.record(stream); // mark position in inference stream
            cuda4dnn::csl::StreamWaitOnEvent(d2h_stream, d2h_event); // don't start transfer until data is available
            cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), temp_span.data(), view.size(), d2h_stream);
        }

        template <> inline
        void convert_D2H_background<float>(const cv::Mat& mat, cuda4dnn::csl::View<float> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream, const cuda4dnn::csl::Stream& d2h_stream, cuda4dnn::csl::Event& d2h_event) {
            d2h_event.record(stream);
            cuda4dnn::csl::StreamWaitOnEvent(d2h_stream, d2h_event);
            cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), view.data(), view.size(), d2h_stream);
        }

        template <class U>
        void convert_H2D(cuda4dnn::csl::Span<U> span, const cv::Mat& mat, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream);

        template <> inline
        void convert_H2D<half>(cuda4dnn::csl::Span<half> span, const cv::Mat& mat, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
            if (device_temp.size() < span.size())
                device_temp.reset(span.size());
            auto temp_span = cuda4dnn::csl::Span<float>(device_temp.get(), span.size());

            cuda4dnn::csl::memcpy<float>(temp_span.data(), reinterpret_cast<float*>(mat.data), span.size(), stream);
            cuda4dnn::kernels::fp32_to_fp16(stream, span, temp_span);
        }

        template <> inline
        void convert_H2D<float>(cuda4dnn::csl::Span<float> span, const cv::Mat& mat, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
            cuda4dnn::csl::memcpy<float>(span.data(), reinterpret_cast<float*>(mat.data), span.size(), stream);
        }
    }} /* namespace cuda4dnn::detail */

    template <class T, int TargetID>
    class GenericCUDABackendWrapper final : public CUDABackendWrapper {
    public:
        using value_type = T;
        using tensor_span_type = cuda4dnn::csl::TensorSpan<value_type>;
        using tensor_view_type = cuda4dnn::csl::TensorView<value_type>;

        /* Pre-conditions:
         * - there must be no other instance of `GenericCUDABackendWrapper` which wraps the host memory used by `m`
         * - the host memory must remain allocated throughout the lifetime of this object
         *
         * Post-conditions:
         * - the host memory used by \p m "may" be page-locked
         */
        GenericCUDABackendWrapper(Mat& m)
            : CUDABackendWrapper(TargetID)
        {
            shape = cv::dnn::shape(m);
            offset = 0;

            shared_block = std::make_shared<shared_block_type>();
            shared_block->host_dirty = true;
            shared_block->device_dirty = false;

            shared_block->host = m;

            try {
                shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard(m.data, m.total() * m.elemSize());
            } catch (...) {
                /* a common reason for failure is that the host system (for example, a Jetson device) does not support it */
                /* we ignore the failure as this is just an optimization and not a requirement */
            }

            shared_block->device = cuda4dnn::csl::ManagedPtr<T>(m.total());
        }

        GenericCUDABackendWrapper(const Ptr<BackendWrapper>& base_, const MatShape& shape_)
            : CUDABackendWrapper(TargetID)
        {
            const Ptr<GenericCUDABackendWrapper> base = base_.dynamicCast<GenericCUDABackendWrapper>();
            CV_Assert(base);

            shape = shape_;
            offset = 0;
            shared_block = base->shared_block;

            auto numel = total(shape_);
            if (numel > shared_block->device.size())
            {
                /* if the host memory was already page-locked, release it and register again with the new size */
                shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard();
                try {
                    CV_Assert(shared_block->host.type() == CV_32F);
                    shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard(shared_block->host.data, numel * sizeof(float));
                } catch (...) {
                    /* a common reason for failure is that the host system (for example, a Jetson device) does not support it */
                    /* we ignore the failure as this is just an optimization and not a requirement */
                }
                shared_block->device.reset(numel);
            }
        }

        static Ptr<BackendWrapper> create(Mat& m) {
            return Ptr<BackendWrapper>(new GenericCUDABackendWrapper(m));
        }

        static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& base, const MatShape& shape) {
            return Ptr<BackendWrapper>(new GenericCUDABackendWrapper(base, shape));
        }

        void copyToHost() override {
            if (shared_block->device_dirty) {
                CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */

                shared_block->host_dirty = false;
                shared_block->device_dirty = false;

                /* If the wrapper is being reused, the device tensor might be larger in size than the wrapper.
                 * Using the device tensor does not give incorrect code but leads to unused region of memory being copied.
                 *
                 * We use a view to ensure that only the required region of memory is copied.
                 */
                auto view = tensor_view_type(shared_block->device.get(), std::begin(shape), std::end(shape));

                auto& mat = shared_block->host;
                CV_Assert(mat.isContinuous());
                CV_Assert(mat.type() == CV_32F);

                cuda4dnn::detail::convert_D2H<T>(mat, view, shared_block->device_temp, shared_block->stream);
                shared_block->stream.synchronize();
            } else if(shared_block->d2h_event && shared_block->d2h_event.busy()) {
                /* wait for the background copy to finish */
                shared_block->d2h_event.synchronize();
            }
        }

        void copyToHostInBackground() override {
            CV_Assert(shared_block->d2h_stream);
            if (shared_block->device_dirty) {
                shared_block->host_dirty = false;
                shared_block->device_dirty = false;

                auto view = tensor_view_type(shared_block->device.get(), std::begin(shape), std::end(shape));

                auto& mat = shared_block->host;
                CV_Assert(mat.isContinuous());
                CV_Assert(mat.type() == CV_32F);

                if (!shared_block->d2h_event)
                    shared_block->d2h_event = cuda4dnn::csl::Event(true);
                cuda4dnn::detail::convert_D2H_background<T>(mat, view, shared_block->device_temp, shared_block->stream, shared_block->d2h_stream, shared_block->d2h_event);
                shared_block->d2h_event.record(shared_block->d2h_stream); // record position so that we can check status later
            }
        }

        void setHostDirty() override {
            shared_block->device_dirty = false;
            shared_block->host_dirty = true;
        }

        void copyToDevice() override {
            if (shared_block->host_dirty) {
                CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */

                shared_block->host_dirty = false;
                shared_block->device_dirty = false;

                auto span = tensor_span_type(shared_block->device.get(), std::begin(shape), std::end(shape));

                auto& mat = shared_block->host;
                CV_Assert(mat.isContinuous());
                CV_Assert(mat.type() == CV_32F);

                cuda4dnn::detail::convert_H2D<T>(span, mat, shared_block->device_temp, shared_block->stream);
            }
        }

        void setDeviceDirty() override {
            shared_block->device_dirty = true;
            shared_block->host_dirty = false;
        }

        MatShape getShape() const noexcept override { return shape; }

        std::size_t getRank() const noexcept override { return shape.size(); }

        void setStream(cuda4dnn::csl::Stream stream, cuda4dnn::csl::Stream d2h_stream) noexcept override {
            shared_block->stream = std::move(stream);
            shared_block->d2h_stream = std::move(d2h_stream);
        }

        void update(const MatShape& shape_, std::size_t offset_) override {
            auto total = std::accumulate(std::begin(shape_), std::end(shape_), 1, std::multiplies<MatShape::value_type>());
            if (offset_ + total > shared_block->device.size()) {
                CV_Error(Error::BadOffset, "shape and offset provided can potentially leads to OOB access");
            }
            shape = shape_;
            offset = offset_;
        }

        cv::Mat getMutableHostMat() noexcept {
            CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */
            copyToHost();
            setHostDirty();
            return shared_block->host;
        }

        const cv::Mat getImmutableHostMat() const noexcept {
            CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */
            copyToHost();
            return shared_block->host;
        }

        /* Optimization Note: use getSpan() and getView() judiciously
         *
         * getSpan() is meant to be used when the memory is going to be modified
         * getView() is meant to be used when the memory is only going to be read
         *
         * getSpan() marks the device memory as dirty but getView() does not
         *
         * getView() implicitly performs host to device memory transfer if required
         * getSpan() does not perform any synchronization (use copyToDevice if sync. is required)
         */
        tensor_span_type getSpan() noexcept {
            setDeviceDirty();
            return tensor_span_type(shared_block->device.get() + offset, std::begin(shape), std::end(shape));
        }

        tensor_view_type getView() noexcept {
            copyToDevice();
            return tensor_view_type(shared_block->device.get() + offset, std::begin(shape), std::end(shape));
        }

    private:
        /* The same tensor memory can be reused by different layers whenever possible.
         * Hence, it is possible for different backend wrappers to point to the same memory.
         * However, it may use only a part of that memory and have a different shape.
         *
         * We store the common information such as device tensor and its corresponding host memory in
         * a shared block. The shared block is shared by all backend wrappers which use the same memory.
         * The shape, which can be different for different wrappers, is stored as a member object.
         */

        MatShape shape;
        std::size_t offset;

        struct shared_block_type {
            bool host_dirty;
            bool device_dirty;

            cv::Mat host;
            cuda4dnn::csl::MemoryLockGuard memGuard; /* keeps host memory page-locked if possible */

            cuda4dnn::csl::ManagedPtr<T> device;
            cuda4dnn::csl::ManagedPtr<float> device_temp; /* use for conversions */
            cuda4dnn::csl::Stream stream;

            cuda4dnn::csl::Event d2h_event;
            cuda4dnn::csl::Stream d2h_stream;
        };

        std::shared_ptr<shared_block_type> shared_block;
    };

    using CUDABackendWrapperFP16 = GenericCUDABackendWrapper<half, DNN_TARGET_CUDA_FP16>;
    using CUDABackendWrapperFP32 = GenericCUDABackendWrapper<float, DNN_TARGET_CUDA>;

    template <class T> struct GetCUDABackendWrapperType_ { };
    template <> struct GetCUDABackendWrapperType_<half> { typedef CUDABackendWrapperFP16 type; };
    template <> struct GetCUDABackendWrapperType_<float> { typedef CUDABackendWrapperFP32 type; };

    template <class T>
    using GetCUDABackendWrapperType = typename GetCUDABackendWrapperType_<T>::type;

#endif
}} /* namespace cv::dnn */

#endif /* OPENCV_DNN_SRC_OP_CUDA_HPP */