test_common.impl.hpp 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Used in accuracy and perf tests as a content of .cpp file
// Note: don't use "precomp.hpp" here
#include "opencv2/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"

#include "opencv2/dnn.hpp"
#include "test_common.hpp"

#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>

namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN

void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
{
    switch (v) {
    case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
    case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
    case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return;
    case DNN_BACKEND_VKCOM: *os << "VKCOM"; return;
    case DNN_BACKEND_OPENCV: *os << "OCV"; return;
    case DNN_BACKEND_CUDA: *os << "CUDA"; return;
    case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return;
    case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return;
    } // don't use "default:" to emit compiler warnings
    *os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
}

void PrintTo(const cv::dnn::Target& v, std::ostream* os)
{
    switch (v) {
    case DNN_TARGET_CPU: *os << "CPU"; return;
    case DNN_TARGET_OPENCL: *os << "OCL"; return;
    case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
    case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
    case DNN_TARGET_HDDL: *os << "HDDL"; return;
    case DNN_TARGET_VULKAN: *os << "VULKAN"; return;
    case DNN_TARGET_FPGA: *os << "FPGA"; return;
    case DNN_TARGET_CUDA: *os << "CUDA"; return;
    case DNN_TARGET_CUDA_FP16: *os << "CUDA_FP16"; return;
    } // don't use "default:" to emit compiler warnings
    *os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
}

void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
{
    PrintTo(get<0>(v), os);
    *os << "/";
    PrintTo(get<1>(v), os);
}

CV__DNN_INLINE_NS_END
}} // namespace



namespace opencv_test {

void normAssert(
        cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
        double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
{
    double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
    EXPECT_LE(normL1, l1) << comment << "  |ref| = " << cvtest::norm(ref, cv::NORM_INF);

    double normInf = cvtest::norm(ref, test, cv::NORM_INF);
    EXPECT_LE(normInf, lInf) << comment << "  |ref| = " << cvtest::norm(ref, cv::NORM_INF);
}

std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
{
    EXPECT_EQ(m.type(), CV_32FC1);
    EXPECT_EQ(m.dims, 2);
    EXPECT_EQ(m.cols, 4);

    std::vector<cv::Rect2d> boxes(m.rows);
    for (int i = 0; i < m.rows; ++i)
    {
        CV_Assert(m.row(i).isContinuous());
        const float* data = m.ptr<float>(i);
        double l = data[0], t = data[1], r = data[2], b = data[3];
        boxes[i] = cv::Rect2d(l, t, r - l, b - t);
    }
    return boxes;
}

void normAssertDetections(
        const std::vector<int>& refClassIds,
        const std::vector<float>& refScores,
        const std::vector<cv::Rect2d>& refBoxes,
        const std::vector<int>& testClassIds,
        const std::vector<float>& testScores,
        const std::vector<cv::Rect2d>& testBoxes,
        const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
        double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
{
    ASSERT_FALSE(testClassIds.empty()) << "No detections";
    std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
    std::vector<double> refBoxesIoUDiff(refBoxes.size(), 1.0);
    for (int i = 0; i < testBoxes.size(); ++i)
    {
        //cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl;
        double testScore = testScores[i];
        if (testScore < confThreshold)
            continue;

        int testClassId = testClassIds[i];
        const cv::Rect2d& testBox = testBoxes[i];
        bool matched = false;
        double topIoU = 0;
        for (int j = 0; j < refBoxes.size() && !matched; ++j)
        {
            if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
                std::abs(testScore - refScores[j]) < scores_diff)
            {
                double interArea = (testBox & refBoxes[j]).area();
                double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
                topIoU = std::max(topIoU, iou);
                refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou);
                if (1.0 - iou < boxes_iou_diff)
                {
                    matched = true;
                    matchedRefBoxes[j] = true;
                }
            }
        }
        if (!matched)
        {
            std::cout << cv::format("Unmatched prediction: class %d score %f box ",
                                    testClassId, testScore) << testBox << std::endl;
            std::cout << "Highest IoU: " << topIoU << std::endl;
        }
        EXPECT_TRUE(matched) << comment;
    }

    // Check unmatched reference detections.
    for (int i = 0; i < refBoxes.size(); ++i)
    {
        if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
        {
            std::cout << cv::format("Unmatched reference: class %d score %f box ",
                                    refClassIds[i], refScores[i]) << refBoxes[i]
                << " IoU diff: " << refBoxesIoUDiff[i]
                << std::endl;
            EXPECT_LE(refScores[i], confThreshold) << comment;
        }
    }
}

// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
void normAssertDetections(
        cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
        double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
        double boxes_iou_diff /*= 1e-4*/)
{
    CV_Assert(ref.total() % 7 == 0);
    CV_Assert(out.total() % 7 == 0);
    ref = ref.reshape(1, ref.total() / 7);
    out = out.reshape(1, out.total() / 7);

    cv::Mat refClassIds, testClassIds;
    ref.col(1).convertTo(refClassIds, CV_32SC1);
    out.col(1).convertTo(testClassIds, CV_32SC1);
    std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
    std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
    std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
    normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
                         testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
}

// For text detection networks
// Curved text polygon is not supported in the current version.
// (concave polygon is invalid input to intersectConvexConvex)
void normAssertTextDetections(
        const std::vector<std::vector<Point>>& gtPolys,
        const std::vector<std::vector<Point>>& testPolys,
        const char *comment /*= ""*/, double boxes_iou_diff /*= 1e-4*/)
{
    std::vector<bool> matchedRefBoxes(gtPolys.size(), false);
    for (uint i = 0; i < testPolys.size(); ++i)
    {
        const std::vector<Point>& testPoly = testPolys[i];
        bool matched = false;
        double topIoU = 0;
        for (uint j = 0; j < gtPolys.size() && !matched; ++j)
        {
            if (!matchedRefBoxes[j])
            {
                std::vector<Point> intersectionPolygon;
                float intersectArea = intersectConvexConvex(testPoly, gtPolys[j], intersectionPolygon, true);
                double iou = intersectArea / (contourArea(testPoly) + contourArea(gtPolys[j]) - intersectArea);
                topIoU = std::max(topIoU, iou);
                if (1.0 - iou < boxes_iou_diff)
                {
                    matched = true;
                    matchedRefBoxes[j] = true;
                }
            }
        }
        if (!matched) {
            std::cout << cv::format("Unmatched-det:") << testPoly << std::endl;
            std::cout << "Highest IoU: " << topIoU << std::endl;
        }
        EXPECT_TRUE(matched) << comment;
    }

    // Check unmatched groundtruth.
    for (uint i = 0; i < gtPolys.size(); ++i)
    {
        if (!matchedRefBoxes[i]) {
            std::cout << cv::format("Unmatched-gt:") << gtPolys[i] << std::endl;
        }
        EXPECT_TRUE(matchedRefBoxes[i]);
    }
}

void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
{
    const std::ios::openmode mode = std::ios::in | std::ios::binary;
    std::ifstream ifs(filename.c_str(), mode);
    ASSERT_TRUE(ifs.is_open());

    content.clear();

    ifs.seekg(0, std::ios::end);
    const size_t sz = ifs.tellg();
    content.resize(sz);
    ifs.seekg(0, std::ios::beg);

    ifs.read((char*)content.data(), sz);
    ASSERT_FALSE(ifs.fail());
}


testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
        bool withInferenceEngine /*= true*/,
        bool withHalide /*= false*/,
        bool withCpuOCV /*= true*/,
        bool withVkCom /*= true*/,
        bool withCUDA /*= true*/,
        bool withNgraph /*= true*/
)
{
#ifdef HAVE_INF_ENGINE
    bool withVPU = validateVPUType();
#endif

    std::vector< tuple<Backend, Target> > targets;
    std::vector< Target > available;
    if (withHalide)
    {
        available = getAvailableTargets(DNN_BACKEND_HALIDE);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
            targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
    }
#ifdef HAVE_INF_ENGINE
    if (withInferenceEngine)
    {
        available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
        {
            if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
                continue;
            targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
        }
    }
    if (withNgraph)
    {
        available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
        {
            if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
                continue;
            targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
        }

    }
#else
    CV_UNUSED(withInferenceEngine);
#endif
    if (withVkCom)
    {
        available = getAvailableTargets(DNN_BACKEND_VKCOM);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
            targets.push_back(make_tuple(DNN_BACKEND_VKCOM, *i));
    }

#ifdef HAVE_CUDA
    if(withCUDA)
    {
        for (auto target : getAvailableTargets(DNN_BACKEND_CUDA))
            targets.push_back(make_tuple(DNN_BACKEND_CUDA, target));
    }
#endif

    {
        available = getAvailableTargets(DNN_BACKEND_OPENCV);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
        {
            if (!withCpuOCV && *i == DNN_TARGET_CPU)
                continue;
            targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
        }
    }
    if (targets.empty())  // validate at least CPU mode
        targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
    return testing::ValuesIn(targets);
}

testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE()
{
#ifdef HAVE_INF_ENGINE
    bool withVPU = validateVPUType();

    std::vector< tuple<Backend, Target> > targets;
    std::vector< Target > available;

    {
        available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
        {
            if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
                continue;
            targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
        }
    }

    {
        available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
        for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
        {
            if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
                continue;
            targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
        }

    }

    return testing::ValuesIn(targets);
#else
    return testing::ValuesIn(std::vector< tuple<Backend, Target> >());
#endif
}

#ifdef HAVE_INF_ENGINE
static std::string getTestInferenceEngineVPUType()
{
    static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
    return param_vpu_type;
}

static bool validateVPUType_()
{
    std::string test_vpu_type = getTestInferenceEngineVPUType();
    if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
    {
        return false;
    }

    std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
    bool have_vpu_target = false;
    for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
    {
        if (*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL)
        {
            have_vpu_target = true;
            break;
        }
    }

    if (test_vpu_type.empty())
    {
        if (have_vpu_target)
        {
            CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
        }
    }
    else
    {
        if (!have_vpu_target)
        {
            CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
            exit(1);
        }
        std::string dnn_vpu_type = getInferenceEngineVPUType();
        if (dnn_vpu_type != test_vpu_type)
        {
            CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
            exit(1);
        }
    }
    if (have_vpu_target)
    {
        std::string dnn_vpu_type = getInferenceEngineVPUType();
        if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2)
            registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
        if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
            registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
    }
    return true;
}

bool validateVPUType()
{
    static bool result = validateVPUType_();
    return result;
}
#endif // HAVE_INF_ENGINE


void initDNNTests()
{
    const char* extraTestDataPath =
#ifdef WINRT
        NULL;
#else
        getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
    if (extraTestDataPath)
        cvtest::addDataSearchPath(extraTestDataPath);

    registerGlobalSkipTag(
        CV_TEST_TAG_DNN_SKIP_HALIDE,
        CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
    );
#if defined(INF_ENGINE_RELEASE)
    registerGlobalSkipTag(
        CV_TEST_TAG_DNN_SKIP_IE,
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
        CV_TEST_TAG_DNN_SKIP_IE_2018R5,
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
        CV_TEST_TAG_DNN_SKIP_IE_2019R1,
# if INF_ENGINE_RELEASE == 2019010100
        CV_TEST_TAG_DNN_SKIP_IE_2019R1_1,
# endif
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
        CV_TEST_TAG_DNN_SKIP_IE_2019R2,
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
        CV_TEST_TAG_DNN_SKIP_IE_2019R3,
#endif
#ifdef HAVE_DNN_NGRAPH
        CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
#endif
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
        CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
#endif
        CV_TEST_TAG_DNN_SKIP_IE_CPU
    );
    registerGlobalSkipTag(
        // see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
        CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
    );
#endif
#ifdef HAVE_VULKAN
    registerGlobalSkipTag(
        CV_TEST_TAG_DNN_SKIP_VULKAN
    );
#endif

#ifdef HAVE_CUDA
    registerGlobalSkipTag(
        CV_TEST_TAG_DNN_SKIP_CUDA, CV_TEST_TAG_DNN_SKIP_CUDA_FP32, CV_TEST_TAG_DNN_SKIP_CUDA_FP16
    );
#endif
}

} // namespace