face_detection_mtcnn.cpp
30.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#include <algorithm>
#include <cctype>
#include <cmath>
#include <iostream>
#include <limits>
#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/highgui.hpp>
const std::string about =
"This is an OpenCV-based version of OMZ MTCNN Face Detection example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ mtcnnpm | mtcnn-p.xml | Path to OpenVINO MTCNN P (Proposal) detection model (.xml)}"
"{ mtcnnpd | CPU | Target device for the MTCNN P (e.g. CPU, GPU, VPU, ...) }"
"{ mtcnnrm | mtcnn-r.xml | Path to OpenVINO MTCNN R (Refinement) detection model (.xml)}"
"{ mtcnnrd | CPU | Target device for the MTCNN R (e.g. CPU, GPU, VPU, ...) }"
"{ mtcnnom | mtcnn-o.xml | Path to OpenVINO MTCNN O (Output) detection model (.xml)}"
"{ mtcnnod | CPU | Target device for the MTCNN O (e.g. CPU, GPU, VPU, ...) }"
"{ thrp | 0.6 | MTCNN P confidence threshold}"
"{ thrr | 0.7 | MTCNN R confidence threshold}"
"{ thro | 0.7 | MTCNN O confidence threshold}"
"{ half_scale | false | MTCNN P use half scale pyramid}"
"{ queue_capacity | 1 | Streaming executor queue capacity. Calculated automaticaly if 0}"
;
namespace {
std::string weights_path(const std::string& model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
const auto ext = model_path.substr(sz - EXT_LEN);
CV_Assert(cv::toLowerCase(ext) == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
//////////////////////////////////////////////////////////////////////
} // anonymous namespace
namespace custom {
namespace {
// Define custom structures and operations
#define NUM_REGRESSIONS 4
#define NUM_PTS 5
struct BBox {
int x1;
int y1;
int x2;
int y2;
cv::Rect getRect() const { return cv::Rect(x1,
y1,
x2 - x1,
y2 - y1); }
BBox getSquare() const {
BBox bbox;
float bboxWidth = static_cast<float>(x2 - x1);
float bboxHeight = static_cast<float>(y2 - y1);
float side = std::max(bboxWidth, bboxHeight);
bbox.x1 = static_cast<int>(static_cast<float>(x1) + (bboxWidth - side) * 0.5f);
bbox.y1 = static_cast<int>(static_cast<float>(y1) + (bboxHeight - side) * 0.5f);
bbox.x2 = static_cast<int>(static_cast<float>(bbox.x1) + side);
bbox.y2 = static_cast<int>(static_cast<float>(bbox.y1) + side);
return bbox;
}
};
struct Face {
BBox bbox;
float score;
std::array<float, NUM_REGRESSIONS> regression;
std::array<float, 2 * NUM_PTS> ptsCoords;
static void applyRegression(std::vector<Face>& faces, bool addOne = false) {
for (auto& face : faces) {
float bboxWidth =
face.bbox.x2 - face.bbox.x1 + static_cast<float>(addOne);
float bboxHeight =
face.bbox.y2 - face.bbox.y1 + static_cast<float>(addOne);
face.bbox.x1 = static_cast<int>(static_cast<float>(face.bbox.x1) + (face.regression[1] * bboxWidth));
face.bbox.y1 = static_cast<int>(static_cast<float>(face.bbox.y1) + (face.regression[0] * bboxHeight));
face.bbox.x2 = static_cast<int>(static_cast<float>(face.bbox.x2) + (face.regression[3] * bboxWidth));
face.bbox.y2 = static_cast<int>(static_cast<float>(face.bbox.y2) + (face.regression[2] * bboxHeight));
}
}
static void bboxes2Squares(std::vector<Face>& faces) {
for (auto& face : faces) {
face.bbox = face.bbox.getSquare();
}
}
static std::vector<Face> runNMS(std::vector<Face>& faces, const float threshold,
const bool useMin = false) {
std::vector<Face> facesNMS;
if (faces.empty()) {
return facesNMS;
}
std::sort(faces.begin(), faces.end(), [](const Face& f1, const Face& f2) {
return f1.score > f2.score;
});
std::vector<int> indices(faces.size());
std::iota(indices.begin(), indices.end(), 0);
while (indices.size() > 0) {
const int idx = indices[0];
facesNMS.push_back(faces[idx]);
std::vector<int> tmpIndices = indices;
indices.clear();
const float area1 = static_cast<float>(faces[idx].bbox.x2 - faces[idx].bbox.x1 + 1) *
static_cast<float>(faces[idx].bbox.y2 - faces[idx].bbox.y1 + 1);
for (size_t i = 1; i < tmpIndices.size(); ++i) {
int tmpIdx = tmpIndices[i];
const float interX1 = static_cast<float>(std::max(faces[idx].bbox.x1, faces[tmpIdx].bbox.x1));
const float interY1 = static_cast<float>(std::max(faces[idx].bbox.y1, faces[tmpIdx].bbox.y1));
const float interX2 = static_cast<float>(std::min(faces[idx].bbox.x2, faces[tmpIdx].bbox.x2));
const float interY2 = static_cast<float>(std::min(faces[idx].bbox.y2, faces[tmpIdx].bbox.y2));
const float bboxWidth = std::max(0.0f, (interX2 - interX1 + 1));
const float bboxHeight = std::max(0.0f, (interY2 - interY1 + 1));
const float interArea = bboxWidth * bboxHeight;
const float area2 = static_cast<float>(faces[tmpIdx].bbox.x2 - faces[tmpIdx].bbox.x1 + 1) *
static_cast<float>(faces[tmpIdx].bbox.y2 - faces[tmpIdx].bbox.y1 + 1);
float overlap = 0.0;
if (useMin) {
overlap = interArea / std::min(area1, area2);
} else {
overlap = interArea / (area1 + area2 - interArea);
}
if (overlap <= threshold) {
indices.push_back(tmpIdx);
}
}
}
return facesNMS;
}
};
const float P_NET_WINDOW_SIZE = 12.0f;
std::vector<Face> buildFaces(const cv::Mat& scores,
const cv::Mat& regressions,
const float scaleFactor,
const float threshold) {
auto w = scores.size[3];
auto h = scores.size[2];
auto size = w * h;
const float* scores_data = scores.ptr<float>();
scores_data += size;
const float* reg_data = regressions.ptr<float>();
auto out_side = std::max(h, w);
auto in_side = 2 * out_side + 11;
float stride = 0.0f;
if (out_side != 1)
{
stride = static_cast<float>(in_side - P_NET_WINDOW_SIZE) / static_cast<float>(out_side - 1);
}
std::vector<Face> boxes;
for (int i = 0; i < size; i++) {
if (scores_data[i] >= (threshold)) {
float y = static_cast<float>(i / w);
float x = static_cast<float>(i - w * y);
Face faceInfo;
BBox& faceBox = faceInfo.bbox;
faceBox.x1 = std::max(0, static_cast<int>((x * stride) / scaleFactor));
faceBox.y1 = std::max(0, static_cast<int>((y * stride) / scaleFactor));
faceBox.x2 = static_cast<int>((x * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor);
faceBox.y2 = static_cast<int>((y * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor);
faceInfo.regression[0] = reg_data[i];
faceInfo.regression[1] = reg_data[i + size];
faceInfo.regression[2] = reg_data[i + 2 * size];
faceInfo.regression[3] = reg_data[i + 3 * size];
faceInfo.score = scores_data[i];
boxes.push_back(faceInfo);
}
}
return boxes;
}
// Define networks for this sample
using GMat2 = std::tuple<cv::GMat, cv::GMat>;
using GMat3 = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
using GMats = cv::GArray<cv::GMat>;
using GRects = cv::GArray<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
G_API_NET(MTCNNRefinement,
<GMat2(cv::GMat)>,
"sample.custom.mtcnn_refinement");
G_API_NET(MTCNNOutput,
<GMat3(cv::GMat)>,
"sample.custom.mtcnn_output");
using GFaces = cv::GArray<Face>;
G_API_OP(BuildFaces,
<GFaces(cv::GMat, cv::GMat, float, float)>,
"sample.custom.mtcnn.build_faces") {
static cv::GArrayDesc outMeta(const cv::GMatDesc&,
const cv::GMatDesc&,
const float,
const float) {
return cv::empty_array_desc();
}
};
G_API_OP(RunNMS,
<GFaces(GFaces, float, bool)>,
"sample.custom.mtcnn.run_nms") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
const float, const bool) {
return cv::empty_array_desc();
}
};
G_API_OP(AccumulatePyramidOutputs,
<GFaces(GFaces, GFaces)>,
"sample.custom.mtcnn.accumulate_pyramid_outputs") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
const cv::GArrayDesc&) {
return cv::empty_array_desc();
}
};
G_API_OP(ApplyRegression,
<GFaces(GFaces, bool)>,
"sample.custom.mtcnn.apply_regression") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const bool) {
return cv::empty_array_desc();
}
};
G_API_OP(BBoxesToSquares,
<GFaces(GFaces)>,
"sample.custom.mtcnn.bboxes_to_squares") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&) {
return cv::empty_array_desc();
}
};
G_API_OP(R_O_NetPreProcGetROIs,
<GRects(GFaces, GSize)>,
"sample.custom.mtcnn.bboxes_r_o_net_preproc_get_rois") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const cv::GOpaqueDesc&) {
return cv::empty_array_desc();
}
};
G_API_OP(RNetPostProc,
<GFaces(GFaces, GMats, GMats, float)>,
"sample.custom.mtcnn.rnet_postproc") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
const cv::GArrayDesc&,
const cv::GArrayDesc&,
const float) {
return cv::empty_array_desc();
}
};
G_API_OP(ONetPostProc,
<GFaces(GFaces, GMats, GMats, GMats, float)>,
"sample.custom.mtcnn.onet_postproc") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
const cv::GArrayDesc&,
const cv::GArrayDesc&,
const cv::GArrayDesc&,
const float) {
return cv::empty_array_desc();
}
};
G_API_OP(SwapFaces,
<GFaces(GFaces)>,
"sample.custom.mtcnn.swap_faces") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc&) {
return cv::empty_array_desc();
}
};
//Custom kernels implementation
GAPI_OCV_KERNEL(OCVBuildFaces, BuildFaces) {
static void run(const cv::Mat & in_scores,
const cv::Mat & in_regresssions,
const float scaleFactor,
const float threshold,
std::vector<Face> &out_faces) {
out_faces = buildFaces(in_scores, in_regresssions, scaleFactor, threshold);
}
};// GAPI_OCV_KERNEL(BuildFaces)
GAPI_OCV_KERNEL(OCVRunNMS, RunNMS) {
static void run(const std::vector<Face> &in_faces,
const float threshold,
const bool useMin,
std::vector<Face> &out_faces) {
std::vector<Face> in_faces_copy = in_faces;
out_faces = Face::runNMS(in_faces_copy, threshold, useMin);
}
};// GAPI_OCV_KERNEL(RunNMS)
GAPI_OCV_KERNEL(OCVAccumulatePyramidOutputs, AccumulatePyramidOutputs) {
static void run(const std::vector<Face> &total_faces,
const std::vector<Face> &in_faces,
std::vector<Face> &out_faces) {
out_faces = total_faces;
out_faces.insert(out_faces.end(), in_faces.begin(), in_faces.end());
}
};// GAPI_OCV_KERNEL(AccumulatePyramidOutputs)
GAPI_OCV_KERNEL(OCVApplyRegression, ApplyRegression) {
static void run(const std::vector<Face> &in_faces,
const bool addOne,
std::vector<Face> &out_faces) {
std::vector<Face> in_faces_copy = in_faces;
Face::applyRegression(in_faces_copy, addOne);
out_faces.clear();
out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end());
}
};// GAPI_OCV_KERNEL(ApplyRegression)
GAPI_OCV_KERNEL(OCVBBoxesToSquares, BBoxesToSquares) {
static void run(const std::vector<Face> &in_faces,
std::vector<Face> &out_faces) {
std::vector<Face> in_faces_copy = in_faces;
Face::bboxes2Squares(in_faces_copy);
out_faces.clear();
out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end());
}
};// GAPI_OCV_KERNEL(BBoxesToSquares)
GAPI_OCV_KERNEL(OCVR_O_NetPreProcGetROIs, R_O_NetPreProcGetROIs) {
static void run(const std::vector<Face> &in_faces,
const cv::Size & in_image_size,
std::vector<cv::Rect> &outs) {
outs.clear();
for (const auto& face : in_faces) {
cv::Rect tmp_rect = face.bbox.getRect();
//Compare to transposed sizes width<->height
tmp_rect &= cv::Rect(tmp_rect.x, tmp_rect.y, in_image_size.height - tmp_rect.x, in_image_size.width - tmp_rect.y) &
cv::Rect(0, 0, in_image_size.height, in_image_size.width);
outs.push_back(tmp_rect);
}
}
};// GAPI_OCV_KERNEL(R_O_NetPreProcGetROIs)
GAPI_OCV_KERNEL(OCVRNetPostProc, RNetPostProc) {
static void run(const std::vector<Face> &in_faces,
const std::vector<cv::Mat> &in_scores,
const std::vector<cv::Mat> &in_regresssions,
const float threshold,
std::vector<Face> &out_faces) {
out_faces.clear();
for (unsigned int k = 0; k < in_faces.size(); ++k) {
const float* scores_data = in_scores[k].ptr<float>();
const float* reg_data = in_regresssions[k].ptr<float>();
if (scores_data[1] >= threshold) {
Face info = in_faces[k];
info.score = scores_data[1];
std::copy_n(reg_data, NUM_REGRESSIONS, info.regression.begin());
out_faces.push_back(info);
}
}
}
};// GAPI_OCV_KERNEL(RNetPostProc)
GAPI_OCV_KERNEL(OCVONetPostProc, ONetPostProc) {
static void run(const std::vector<Face> &in_faces,
const std::vector<cv::Mat> &in_scores,
const std::vector<cv::Mat> &in_regresssions,
const std::vector<cv::Mat> &in_landmarks,
const float threshold,
std::vector<Face> &out_faces) {
out_faces.clear();
for (unsigned int k = 0; k < in_faces.size(); ++k) {
const float* scores_data = in_scores[k].ptr<float>();
const float* reg_data = in_regresssions[k].ptr<float>();
const float* landmark_data = in_landmarks[k].ptr<float>();
if (scores_data[1] >= threshold) {
Face info = in_faces[k];
info.score = scores_data[1];
for (size_t i = 0; i < 4; ++i) {
info.regression[i] = reg_data[i];
}
float w = info.bbox.x2 - info.bbox.x1 + 1.0f;
float h = info.bbox.y2 - info.bbox.y1 + 1.0f;
for (size_t p = 0; p < NUM_PTS; ++p) {
info.ptsCoords[2 * p] =
info.bbox.x1 + static_cast<float>(landmark_data[NUM_PTS + p]) * w - 1;
info.ptsCoords[2 * p + 1] = info.bbox.y1 + static_cast<float>(landmark_data[p]) * h - 1;
}
out_faces.push_back(info);
}
}
}
};// GAPI_OCV_KERNEL(ONetPostProc)
GAPI_OCV_KERNEL(OCVSwapFaces, SwapFaces) {
static void run(const std::vector<Face> &in_faces,
std::vector<Face> &out_faces) {
std::vector<Face> in_faces_copy = in_faces;
out_faces.clear();
if (!in_faces_copy.empty()) {
for (size_t i = 0; i < in_faces_copy.size(); ++i) {
std::swap(in_faces_copy[i].bbox.x1, in_faces_copy[i].bbox.y1);
std::swap(in_faces_copy[i].bbox.x2, in_faces_copy[i].bbox.y2);
for (size_t p = 0; p < NUM_PTS; ++p) {
std::swap(in_faces_copy[i].ptsCoords[2 * p], in_faces_copy[i].ptsCoords[2 * p + 1]);
}
}
out_faces = in_faces_copy;
}
}
};// GAPI_OCV_KERNEL(SwapFaces)
} // anonymous namespace
} // namespace custom
namespace vis {
namespace {
void bbox(const cv::Mat& m, const cv::Rect& rc) {
cv::rectangle(m, rc, cv::Scalar{ 0,255,0 }, 2, cv::LINE_8, 0);
};
using rectPoints = std::pair<cv::Rect, std::vector<cv::Point>>;
static cv::Mat drawRectsAndPoints(const cv::Mat& img,
const std::vector<rectPoints> data) {
cv::Mat outImg;
img.copyTo(outImg);
for (const auto& el : data) {
vis::bbox(outImg, el.first);
auto pts = el.second;
for (size_t i = 0; i < pts.size(); ++i) {
cv::circle(outImg, pts[i], 3, cv::Scalar(0, 255, 255), 1);
}
}
return outImg;
}
} // anonymous namespace
} // namespace vis
//Infer helper function
namespace {
static inline std::tuple<cv::GMat, cv::GMat> run_mtcnn_p(cv::GMat &in, const std::string &id) {
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>(id, inputs);
auto regressions = outputs.at("conv4-2");
auto scores = outputs.at("prob1");
return std::make_tuple(regressions, scores);
}
static inline std::string get_pnet_level_name(const cv::Size &in_size) {
return "MTCNNProposal_" + std::to_string(in_size.width) + "x" + std::to_string(in_size.height);
}
int calculate_scales(const cv::Size &input_size, std::vector<double> &out_scales, std::vector<cv::Size> &out_sizes ) {
//calculate multi - scale and limit the maxinum side to 1000
//pr_scale: limit the maxinum side to 1000, < 1.0
double pr_scale = 1.0;
double h = static_cast<double>(input_size.height);
double w = static_cast<double>(input_size.width);
if (std::min(w, h) > 1000)
{
pr_scale = 1000.0 / std::min(h, w);
w = w * pr_scale;
h = h * pr_scale;
}
else if (std::max(w, h) < 1000)
{
w = w * pr_scale;
h = h * pr_scale;
}
//multi - scale
out_scales.clear();
out_sizes.clear();
const double factor = 0.709;
int factor_count = 0;
double minl = std::min(h, w);
while (minl >= 12)
{
const double current_scale = pr_scale * std::pow(factor, factor_count);
cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale),
static_cast<int>(static_cast<double>(input_size.height) * current_scale));
out_scales.push_back(current_scale);
out_sizes.push_back(current_size);
minl *= factor;
factor_count += 1;
}
return factor_count;
}
int calculate_half_scales(const cv::Size &input_size, std::vector<double>& out_scales, std::vector<cv::Size>& out_sizes) {
double pr_scale = 0.5;
const double h = static_cast<double>(input_size.height);
const double w = static_cast<double>(input_size.width);
//multi - scale
out_scales.clear();
out_sizes.clear();
const double factor = 0.5;
int factor_count = 0;
double minl = std::min(h, w);
while (minl >= 12.0*2.0)
{
const double current_scale = pr_scale;
cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale),
static_cast<int>(static_cast<double>(input_size.height) * current_scale));
out_scales.push_back(current_scale);
out_sizes.push_back(current_size);
minl *= factor;
factor_count += 1;
pr_scale *= 0.5;
}
return factor_count;
}
const int MAX_PYRAMID_LEVELS = 13;
//////////////////////////////////////////////////////////////////////
} // anonymous namespace
int main(int argc, char* argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
const auto input_file_name = cmd.get<std::string>("input");
const auto model_path_p = cmd.get<std::string>("mtcnnpm");
const auto target_dev_p = cmd.get<std::string>("mtcnnpd");
const auto conf_thresh_p = cmd.get<float>("thrp");
const auto model_path_r = cmd.get<std::string>("mtcnnrm");
const auto target_dev_r = cmd.get<std::string>("mtcnnrd");
const auto conf_thresh_r = cmd.get<float>("thrr");
const auto model_path_o = cmd.get<std::string>("mtcnnom");
const auto target_dev_o = cmd.get<std::string>("mtcnnod");
const auto conf_thresh_o = cmd.get<float>("thro");
const auto use_half_scale = cmd.get<bool>("half_scale");
const auto streaming_queue_capacity = cmd.get<unsigned int>("queue_capacity");
std::vector<cv::Size> level_size;
std::vector<double> scales;
//MTCNN input size
cv::VideoCapture cap;
cap.open(input_file_name);
if (!cap.isOpened())
CV_Assert(false);
auto in_rsz = cv::Size{ static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)),
static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)) };
//Calculate scales, number of pyramid levels and sizes for PNet pyramid
auto pyramid_levels = use_half_scale ? calculate_half_scales(in_rsz, scales, level_size) :
calculate_scales(in_rsz, scales, level_size);
CV_Assert(pyramid_levels <= MAX_PYRAMID_LEVELS);
//Proposal part of MTCNN graph
//Preprocessing BGR2RGB + transpose (NCWH is expected instead of NCHW)
cv::GMat in_original;
cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original);
cv::GMat in_transposedRGB = cv::gapi::transpose(in_originalRGB);
cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original);
cv::GMat regressions[MAX_PYRAMID_LEVELS];
cv::GMat scores[MAX_PYRAMID_LEVELS];
cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS];
cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS];
//The very first PNet pyramid layer to init total_faces[0]
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposedRGB, get_pnet_level_name(level_size[0]));
cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p);
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true);
cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares);
total_faces[0] = custom::RunNMS::on(final_faces_pnet0, 0.5f, false);
//The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
for (int i = 1; i < pyramid_levels; ++i)
{
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposedRGB, get_pnet_level_name(level_size[i]));
cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p);
cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true);
cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i);
nms_p_faces[i] = custom::RunNMS::on(final_faces_pnet_i, 0.5f, false);
total_faces[i] = custom::AccumulatePyramidOutputs::on(total_faces[i - 1], nms_p_faces[i]);
}
//Proposal post-processing
cv::GArray<custom::Face> final_faces_pnet = custom::RunNMS::on(total_faces[pyramid_levels - 1], 0.7f, true);
//Refinement part of MTCNN graph
cv::GArray<cv::Rect> faces_roi_pnet = custom::R_O_NetPreProcGetROIs::on(final_faces_pnet, in_sz);
cv::GArray<cv::GMat> regressionsRNet, scoresRNet;
std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_transposedRGB);
//Refinement post-processing
cv::GArray<custom::Face> rnet_post_proc_faces = custom::RNetPostProc::on(final_faces_pnet, scoresRNet, regressionsRNet, conf_thresh_r);
cv::GArray<custom::Face> nms07_r_faces_total = custom::RunNMS::on(rnet_post_proc_faces, 0.7f, false);
cv::GArray<custom::Face> final_r_faces_for_bb2squares = custom::ApplyRegression::on(nms07_r_faces_total, true);
cv::GArray<custom::Face> final_faces_rnet = custom::BBoxesToSquares::on(final_r_faces_for_bb2squares);
//Output part of MTCNN graph
cv::GArray<cv::Rect> faces_roi_rnet = custom::R_O_NetPreProcGetROIs::on(final_faces_rnet, in_sz);
cv::GArray<cv::GMat> regressionsONet, scoresONet, landmarksONet;
std::tie(regressionsONet, landmarksONet, scoresONet) = cv::gapi::infer<custom::MTCNNOutput>(faces_roi_rnet, in_transposedRGB);
//Output post-processing
cv::GArray<custom::Face> onet_post_proc_faces = custom::ONetPostProc::on(final_faces_rnet, scoresONet, regressionsONet, landmarksONet, conf_thresh_o);
cv::GArray<custom::Face> final_o_faces_for_nms07 = custom::ApplyRegression::on(onet_post_proc_faces, true);
cv::GArray<custom::Face> nms07_o_faces_total = custom::RunNMS::on(final_o_faces_for_nms07, 0.7f, true);
cv::GArray<custom::Face> final_faces_onet = custom::SwapFaces::on(nms07_o_faces_total);
cv::GComputation graph_mtcnn(cv::GIn(in_original), cv::GOut(cv::gapi::copy(in_original), final_faces_onet));
// MTCNN Refinement detection network
auto mtcnnr_net = cv::gapi::ie::Params<custom::MTCNNRefinement>{
model_path_r, // path to topology IR
weights_path(model_path_r), // path to weights
target_dev_r, // device specifier
}.cfgOutputLayers({ "conv5-2", "prob1" }).cfgInputLayers({ "data" });
// MTCNN Output detection network
auto mtcnno_net = cv::gapi::ie::Params<custom::MTCNNOutput>{
model_path_o, // path to topology IR
weights_path(model_path_o), // path to weights
target_dev_o, // device specifier
}.cfgOutputLayers({ "conv6-2", "conv6-3", "prob1" }).cfgInputLayers({ "data" });
auto networks_mtcnn = cv::gapi::networks(mtcnnr_net, mtcnno_net);
// MTCNN Proposal detection network
for (int i = 0; i < pyramid_levels; ++i)
{
std::string net_id = get_pnet_level_name(level_size[i]);
std::vector<size_t> reshape_dims = { 1, 3, (size_t)level_size[i].width, (size_t)level_size[i].height };
cv::gapi::ie::Params<cv::gapi::Generic> mtcnnp_net{
net_id, // tag
model_path_p, // path to topology IR
weights_path(model_path_p), // path to weights
target_dev_p, // device specifier
};
mtcnnp_net.cfgInputReshape({ {"data", reshape_dims} });
networks_mtcnn += cv::gapi::networks(mtcnnp_net);
}
auto kernels_mtcnn = cv::gapi::kernels< custom::OCVBuildFaces
, custom::OCVRunNMS
, custom::OCVAccumulatePyramidOutputs
, custom::OCVApplyRegression
, custom::OCVBBoxesToSquares
, custom::OCVR_O_NetPreProcGetROIs
, custom::OCVRNetPostProc
, custom::OCVONetPostProc
, custom::OCVSwapFaces
>();
auto mtcnn_args = cv::compile_args(networks_mtcnn, kernels_mtcnn);
if (streaming_queue_capacity != 0)
mtcnn_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
auto pipeline_mtcnn = graph_mtcnn.compileStreaming(std::move(mtcnn_args));
std::cout << "Reading " << input_file_name << std::endl;
// Input stream
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);
// Set the pipeline source & start the pipeline
pipeline_mtcnn.setSource(cv::gin(in_src));
pipeline_mtcnn.start();
// Declare the output data & run the processing loop
cv::TickMeter tm;
cv::Mat image;
std::vector<custom::Face> out_faces;
tm.start();
int frames = 0;
while (pipeline_mtcnn.pull(cv::gout(image, out_faces))) {
frames++;
std::cout << "Final Faces Size " << out_faces.size() << std::endl;
std::vector<vis::rectPoints> data;
// show the image with faces in it
for (const auto& out_face : out_faces) {
std::vector<cv::Point> pts;
for (size_t p = 0; p < NUM_PTS; ++p) {
pts.push_back(
cv::Point(static_cast<int>(out_face.ptsCoords[2 * p]), static_cast<int>(out_face.ptsCoords[2 * p + 1])));
}
auto rect = out_face.bbox.getRect();
auto d = std::make_pair(rect, pts);
data.push_back(d);
}
// Visualize results on the frame
auto resultImg = vis::drawRectsAndPoints(image, data);
tm.stop();
const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS";
cv::putText(resultImg, fps_str, { 0,32 }, cv::FONT_HERSHEY_SIMPLEX, 1.0, { 0,255,0 }, 2);
cv::imshow("Out", resultImg);
cv::waitKey(1);
out_faces.clear();
tm.start();
}
tm.stop();
std::cout << "Processed " << frames << " frames"
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}