gaze_estimation.cpp
17.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#include <algorithm>
#include <iostream>
#include <cctype>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
const std::string about =
"This is an OpenCV-based version of Gaze Estimation example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ facem | face-detection-retail-0005.xml | Path to OpenVINO face detection model (.xml) }"
"{ faced | CPU | Target device for the face detection (e.g. CPU, GPU, ...) }"
"{ landm | facial-landmarks-35-adas-0002.xml | Path to OpenVINO landmarks detector model (.xml) }"
"{ landd | CPU | Target device for the landmarks detector (e.g. CPU, GPU, ...) }"
"{ headm | head-pose-estimation-adas-0001.xml | Path to OpenVINO head pose estimation model (.xml) }"
"{ headd | CPU | Target device for the head pose estimation inference (e.g. CPU, GPU, ...) }"
"{ gazem | gaze-estimation-adas-0002.xml | Path to OpenVINO gaze vector estimaiton model (.xml) }"
"{ gazed | CPU | Target device for the gaze vector estimation inference (e.g. CPU, GPU, ...) }"
;
namespace {
std::string weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
auto lower = [](unsigned char c) {
return static_cast<unsigned char>(std::tolower(c));
};
std::transform(ext.begin(), ext.end(), ext.begin(), lower);
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
} // anonymous namespace
namespace custom {
namespace {
using GMat3 = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
using GMats = cv::GArray<cv::GMat>;
using GRects = cv::GArray<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
G_API_NET(Faces, <cv::GMat(cv::GMat)>, "face-detector" );
G_API_NET(Landmarks, <cv::GMat(cv::GMat)>, "facial-landmarks");
G_API_NET(HeadPose, < GMat3(cv::GMat)>, "head-pose");
G_API_NET(Gaze, <cv::GMat(cv::GMat,cv::GMat,cv::GMat)>, "gaze-vector");
G_API_OP(Size, <GSize(cv::GMat)>, "custom.gapi.size") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD,
<GRects(cv::GMat, GSize, bool)>,
"custom.gaze_estimation.parseSSD") {
static cv::GArrayDesc outMeta( const cv::GMatDesc &
, const cv::GOpaqueDesc &
, bool) {
return cv::empty_array_desc();
}
};
// Left/Right eye per every face
G_API_OP(ParseEyes,
<std::tuple<GRects, GRects>(GMats, GRects, GSize)>,
"custom.gaze_estimation.parseEyes") {
static std::tuple<cv::GArrayDesc, cv::GArrayDesc>
outMeta( const cv::GArrayDesc &
, const cv::GArrayDesc &
, const cv::GOpaqueDesc &) {
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
// Combine three scalars into a 1x3 vector (per every face)
G_API_OP(ProcessPoses,
<GMats(GMats, GMats, GMats)>,
"custom.gaze_estimation.processPoses") {
static cv::GArrayDesc outMeta( const cv::GArrayDesc &
, const cv::GArrayDesc &
, const cv::GArrayDesc &) {
return cv::empty_array_desc();
}
};
void adjustBoundingBox(cv::Rect& boundingBox) {
auto w = boundingBox.width;
auto h = boundingBox.height;
boundingBox.x -= static_cast<int>(0.067 * w);
boundingBox.y -= static_cast<int>(0.028 * h);
boundingBox.width += static_cast<int>(0.15 * w);
boundingBox.height += static_cast<int>(0.13 * h);
if (boundingBox.width < boundingBox.height) {
auto dx = (boundingBox.height - boundingBox.width);
boundingBox.x -= dx / 2;
boundingBox.width += dx;
} else {
auto dy = (boundingBox.width - boundingBox.height);
boundingBox.y -= dy / 2;
boundingBox.height += dy;
}
}
void gazeVectorToGazeAngles(const cv::Point3f& gazeVector,
cv::Point2f& gazeAngles) {
auto r = cv::norm(gazeVector);
double v0 = static_cast<double>(gazeVector.x);
double v1 = static_cast<double>(gazeVector.y);
double v2 = static_cast<double>(gazeVector.z);
gazeAngles.x = static_cast<float>(180.0 / M_PI * (M_PI_2 + std::atan2(v2, v0)));
gazeAngles.y = static_cast<float>(180.0 / M_PI * (M_PI_2 - std::acos(v1 / r)));
}
GAPI_OCV_KERNEL(OCVSize, Size) {
static void run(const cv::Mat &in, cv::Size &out) {
out = in.size();
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Size &upscale,
const bool filter_out_of_bounds,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Rect surface({0,0}, upscale);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label;
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
cv::Rect rc; // map relative coordinates to the original image scale
rc.x = static_cast<int>(rc_left * upscale.width);
rc.y = static_cast<int>(rc_top * upscale.height);
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
adjustBoundingBox(rc); // TODO: new option?
const auto clipped_rc = rc & surface; // TODO: new option?
if (filter_out_of_bounds) {
if (clipped_rc.area() != rc.area()) {
continue;
}
}
out_objects.emplace_back(clipped_rc);
}
}
};
cv::Rect eyeBox(const cv::Rect &face_rc,
float p1_x, float p1_y, float p2_x, float p2_y,
float scale = 1.8f) {
const auto &up = face_rc.size();
const cv::Point p1 = {
static_cast<int>(p1_x*up.width),
static_cast<int>(p1_y*up.height)
};
const cv::Point p2 = {
static_cast<int>(p2_x*up.width),
static_cast<int>(p2_y*up.height)
};
cv::Rect result;
const auto size = static_cast<float>(cv::norm(p1 - p2));
const auto midpoint = (p1 + p2) / 2;
result.width = static_cast<int>(scale * size);
result.height = result.width;
result.x = face_rc.x + midpoint.x - (result.width / 2);
result.y = face_rc.y + midpoint.y - (result.height / 2);
// Shift result to the original frame's absolute coordinates
return result;
}
GAPI_OCV_KERNEL(OCVParseEyes, ParseEyes) {
static void run(const std::vector<cv::Mat> &in_landmarks_per_face,
const std::vector<cv::Rect> &in_face_rcs,
const cv::Size &frame_size,
std::vector<cv::Rect> &out_left_eyes,
std::vector<cv::Rect> &out_right_eyes) {
const size_t numFaces = in_landmarks_per_face.size();
const cv::Rect surface(cv::Point(0,0), frame_size);
GAPI_Assert(numFaces == in_face_rcs.size());
out_left_eyes.clear();
out_right_eyes.clear();
out_left_eyes.reserve(numFaces);
out_right_eyes.reserve(numFaces);
for (std::size_t i = 0u; i < numFaces; i++) {
const auto &lm = in_landmarks_per_face[i];
const auto &rc = in_face_rcs[i];
// Left eye is defined by points 0/1 (x2),
// Right eye is defined by points 2/3 (x2)
const float *data = lm.ptr<float>();
out_left_eyes .push_back(surface & eyeBox(rc, data[0], data[1], data[2], data[3]));
out_right_eyes.push_back(surface & eyeBox(rc, data[4], data[5], data[6], data[7]));
}
}
};
GAPI_OCV_KERNEL(OCVProcessPoses, ProcessPoses) {
static void run(const std::vector<cv::Mat> &in_ys,
const std::vector<cv::Mat> &in_ps,
const std::vector<cv::Mat> &in_rs,
std::vector<cv::Mat> &out_poses) {
const std::size_t sz = in_ys.size();
GAPI_Assert(sz == in_ps.size() && sz == in_rs.size());
out_poses.clear();
for (std::size_t idx = 0u; idx < sz; idx++) {
cv::Mat pose(1, 3, CV_32FC1);
float *ptr = pose.ptr<float>();
ptr[0] = in_ys[idx].ptr<float>()[0];
ptr[1] = in_ps[idx].ptr<float>()[0];
ptr[2] = in_rs[idx].ptr<float>()[0];
out_poses.push_back(std::move(pose));
}
}
};
} // anonymous namespace
} // namespace custom
namespace vis {
namespace {
cv::Point2f midp(const cv::Rect &rc) {
return (rc.tl() + rc.br()) / 2;
};
void bbox(cv::Mat &m, const cv::Rect &rc) {
cv::rectangle(m, rc, cv::Scalar{0,255,0}, 2, cv::LINE_8, 0);
};
void pose(cv::Mat &m, const cv::Mat &p, const cv::Rect &face_rc) {
const auto *posePtr = p.ptr<float>();
const auto yaw = static_cast<double>(posePtr[0]);
const auto pitch = static_cast<double>(posePtr[1]);
const auto roll = static_cast<double>(posePtr[2]);
const auto sinY = std::sin(yaw * M_PI / 180.0);
const auto sinP = std::sin(pitch * M_PI / 180.0);
const auto sinR = std::sin(roll * M_PI / 180.0);
const auto cosY = std::cos(yaw * M_PI / 180.0);
const auto cosP = std::cos(pitch * M_PI / 180.0);
const auto cosR = std::cos(roll * M_PI / 180.0);
const auto axisLength = 0.4 * face_rc.width;
const auto xCenter = face_rc.x + face_rc.width / 2;
const auto yCenter = face_rc.y + face_rc.height / 2;
const auto center = cv::Point{xCenter, yCenter};
const auto axisln = cv::Point2d{axisLength, axisLength};
const auto ctr = cv::Matx<double,2,2>(cosR*cosY, sinY*sinP*sinR, 0.f, cosP*sinR);
const auto ctt = cv::Matx<double,2,2>(cosR*sinY*sinP, cosY*sinR, 0.f, -cosP*cosR);
const auto ctf = cv::Matx<double,2,2>(sinY*cosP, 0.f, 0.f, sinP);
// center to right
cv::line(m, center, center + static_cast<cv::Point>(ctr*axisln), cv::Scalar(0, 0, 255), 2);
// center to top
cv::line(m, center, center + static_cast<cv::Point>(ctt*axisln), cv::Scalar(0, 255, 0), 2);
// center to forward
cv::line(m, center, center + static_cast<cv::Point>(ctf*axisln), cv::Scalar(255, 0, 255), 2);
}
void vvec(cv::Mat &m, const cv::Mat &v, const cv::Rect &face_rc,
const cv::Rect &left_rc, const cv::Rect &right_rc) {
const auto scale = 0.002 * face_rc.width;
cv::Point3f gazeVector;
const auto *gazePtr = v.ptr<float>();
gazeVector.x = gazePtr[0];
gazeVector.y = gazePtr[1];
gazeVector.z = gazePtr[2];
gazeVector = gazeVector / cv::norm(gazeVector);
const double arrowLength = 0.4 * face_rc.width;
const auto left_mid = midp(left_rc);
const auto right_mid = midp(right_rc);
cv::Point2f gazeArrow;
gazeArrow.x = gazeVector.x;
gazeArrow.y = -gazeVector.y;
gazeArrow *= arrowLength;
cv::arrowedLine(m, left_mid, left_mid + gazeArrow, cv::Scalar(255, 0, 0), 2);
cv::arrowedLine(m, right_mid, right_mid + gazeArrow, cv::Scalar(255, 0, 0), 2);
cv::Point2f gazeAngles;
custom::gazeVectorToGazeAngles(gazeVector, gazeAngles);
cv::putText(m,
cv::format("gaze angles: (h=%0.0f, v=%0.0f)",
static_cast<double>(std::round(gazeAngles.x)),
static_cast<double>(std::round(gazeAngles.y))),
cv::Point(static_cast<int>(face_rc.tl().x),
static_cast<int>(face_rc.br().y + 12. * face_rc.width / 100.)),
cv::FONT_HERSHEY_PLAIN, scale * 2, cv::Scalar::all(255), 1);
};
} // anonymous namespace
} // namespace vis
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
cv::GMat in;
cv::GMat faces = cv::gapi::infer<custom::Faces>(in);
cv::GOpaque<cv::Size> sz = cv::gapi::streaming::size(in);
cv::GArray<cv::Rect> faces_rc = custom::ParseSSD::on(faces, sz, true);
cv::GArray<cv::GMat> angles_y, angles_p, angles_r;
std::tie(angles_y, angles_p, angles_r) = cv::gapi::infer<custom::HeadPose>(faces_rc, in);
cv::GArray<cv::GMat> heads_pos = custom::ProcessPoses::on(angles_y, angles_p, angles_r);
cv::GArray<cv::GMat> landmarks = cv::gapi::infer<custom::Landmarks>(faces_rc, in);
cv::GArray<cv::Rect> left_eyes, right_eyes;
std::tie(left_eyes, right_eyes) = custom::ParseEyes::on(landmarks, faces_rc, sz);
cv::GArray<cv::GMat> gaze_vectors = cv::gapi::infer2<custom::Gaze>( in
, left_eyes
, right_eyes
, heads_pos);
cv::GComputation graph(cv::GIn(in),
cv::GOut( cv::gapi::copy(in)
, faces_rc
, left_eyes
, right_eyes
, heads_pos
, gaze_vectors));
const auto input_file_name = cmd.get<std::string>("input");
const auto face_model_path = cmd.get<std::string>("facem");
const auto head_model_path = cmd.get<std::string>("headm");
const auto lmrk_model_path = cmd.get<std::string>("landm");
const auto gaze_model_path = cmd.get<std::string>("gazem");
auto face_net = cv::gapi::ie::Params<custom::Faces> {
face_model_path, // path to topology IR
weights_path(face_model_path), // path to weights
cmd.get<std::string>("faced"), /// device specifier
};
auto head_net = cv::gapi::ie::Params<custom::HeadPose> {
head_model_path, // path to topology IR
weights_path(head_model_path), // path to weights
cmd.get<std::string>("headd"), // device specifier
}.cfgOutputLayers({"angle_y_fc", "angle_p_fc", "angle_r_fc"});
auto landmarks_net = cv::gapi::ie::Params<custom::Landmarks> {
lmrk_model_path, // path to topology IR
weights_path(lmrk_model_path), // path to weights
cmd.get<std::string>("landd"), // device specifier
};
auto gaze_net = cv::gapi::ie::Params<custom::Gaze> {
gaze_model_path, // path to topology IR
weights_path(gaze_model_path), // path to weights
cmd.get<std::string>("gazed"), // device specifier
}.cfgInputLayers({"left_eye_image", "right_eye_image", "head_pose_angles"});
auto kernels = cv::gapi::kernels< custom::OCVSize
, custom::OCVParseSSD
, custom::OCVParseEyes
, custom::OCVProcessPoses>();
auto networks = cv::gapi::networks(face_net, head_net, landmarks_net, gaze_net);
auto pipeline = graph.compileStreaming(cv::compile_args(networks, kernels));
cv::TickMeter tm;
cv::Mat image;
std::vector<cv::Rect> out_faces, out_right_eyes, out_left_eyes;
std::vector<cv::Mat> out_poses;
std::vector<cv::Mat> out_gazes;
std::size_t frames = 0u;
std::cout << "Reading " << input_file_name << std::endl;
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name));
pipeline.start();
tm.start();
while (pipeline.pull(cv::gout( image
, out_faces
, out_left_eyes
, out_right_eyes
, out_poses
, out_gazes))) {
frames++;
// Visualize results on the frame
for (auto &&rc : out_faces) vis::bbox(image, rc);
for (auto &&rc : out_left_eyes) vis::bbox(image, rc);
for (auto &&rc : out_right_eyes) vis::bbox(image, rc);
for (std::size_t i = 0u; i < out_faces.size(); i++) {
vis::pose(image, out_poses[i], out_faces[i]);
vis::vvec(image, out_gazes[i], out_faces[i], out_left_eyes[i], out_right_eyes[i]);
}
tm.stop();
const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS";
cv::putText(image, fps_str, {0,32}, cv::FONT_HERSHEY_SIMPLEX, 1.0, {0,255,0}, 2);
cv::imshow("Out", image);
cv::waitKey(1);
tm.start();
}
tm.stop();
std::cout << "Processed " << frames << " frames"
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}