text_detection.cpp 26.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
#include <algorithm>
#include <cctype>
#include <cmath>
#include <iostream>
#include <limits>
#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>

#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/streaming/cap.hpp>

#include <opencv2/highgui.hpp>
#include <opencv2/core/utility.hpp>

const std::string about =
    "This is an OpenCV-based version of OMZ Text Detection example";
const std::string keys =
    "{ h help |                           | Print this help message }"
    "{ input  |                           | Path to the input video file }"
    "{ tdm    | text-detection-0004.xml   | Path to OpenVINO text detection model (.xml), versions 0003 and 0004 work }"
    "{ tdd    | CPU                       | Target device for the text detector (e.g. CPU, GPU, VPU, ...) }"
    "{ trm    | text-recognition-0012.xml | Path to OpenVINO text recognition model (.xml) }"
    "{ trd    | CPU                       | Target device for the text recognition (e.g. CPU, GPU, VPU, ...) }"
    "{ bw     | 0                         | CTC beam search decoder bandwidth, if 0, a CTC greedy decoder is used}"
    "{ sset   | 0123456789abcdefghijklmnopqrstuvwxyz | Symbol set to use with text recognition decoder. Shouldn't contain symbol #. }"
    "{ thr    | 0.2                       | Text recognition confidence threshold}"
    ;

namespace {
std::string weights_path(const std::string &model_path) {
    const auto EXT_LEN = 4u;
    const auto sz = model_path.size();
    CV_Assert(sz > EXT_LEN);

    const auto ext = model_path.substr(sz - EXT_LEN);
    CV_Assert(cv::toLowerCase(ext) == ".xml");
    return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}

//////////////////////////////////////////////////////////////////////
// Taken from OMZ samples as-is
template<typename Iter>
void softmax_and_choose(Iter begin, Iter end, int *argmax, float *prob) {
    auto max_element = std::max_element(begin, end);
    *argmax = static_cast<int>(std::distance(begin, max_element));
    float max_val = *max_element;
    double sum = 0;
    for (auto i = begin; i != end; i++) {
       sum += std::exp((*i) - max_val);
    }
    if (std::fabs(sum) < std::numeric_limits<double>::epsilon()) {
        throw std::logic_error("sum can't be equal to zero");
    }
    *prob = 1.0f / static_cast<float>(sum);
}

template<typename Iter>
std::vector<float> softmax(Iter begin, Iter end) {
    std::vector<float> prob(end - begin, 0.f);
    std::transform(begin, end, prob.begin(), [](float x) { return std::exp(x); });
    float sum = std::accumulate(prob.begin(), prob.end(), 0.0f);
    for (int i = 0; i < static_cast<int>(prob.size()); i++)
        prob[i] /= sum;
    return prob;
}

struct BeamElement {
    std::vector<int> sentence;   //!< The sequence of chars that will be a result of the beam element

    float prob_blank;            //!< The probability that the last char in CTC sequence
                                 //!< for the beam element is the special blank char

    float prob_not_blank;        //!< The probability that the last char in CTC sequence
                                 //!< for the beam element is NOT the special blank char

    float prob() const {         //!< The probability of the beam element.
        return prob_blank + prob_not_blank;
    }
};

std::string CTCGreedyDecoder(const float *data,
                             const std::size_t sz,
                             const std::string &alphabet,
                             const char pad_symbol,
                             double *conf) {
    std::string res = "";
    bool prev_pad = false;
    *conf = 1;

    const auto num_classes = alphabet.length();
    for (auto it = data; it != (data+sz); it += num_classes) {
        int argmax = 0;
        float prob = 0.f;

        softmax_and_choose(it, it + num_classes, &argmax, &prob);
        (*conf) *= prob;

        auto symbol = alphabet[argmax];
        if (symbol != pad_symbol) {
            if (res.empty() || prev_pad || (!res.empty() && symbol != res.back())) {
                prev_pad = false;
                res += symbol;
            }
        } else {
            prev_pad = true;
        }
    }
    return res;
}

std::string CTCBeamSearchDecoder(const float *data,
                                 const std::size_t sz,
                                 const std::string &alphabet,
                                 double *conf,
                                 int bandwidth) {
    const auto num_classes = alphabet.length();

    std::vector<BeamElement> curr;
    std::vector<BeamElement> last;

    last.push_back(BeamElement{std::vector<int>(), 1.f, 0.f});

    for (auto it = data; it != (data+sz); it += num_classes) {
        curr.clear();

        std::vector<float> prob = softmax(it, it + num_classes);

        for(const auto& candidate: last) {
            float prob_not_blank = 0.f;
            const std::vector<int>& candidate_sentence = candidate.sentence;
            if (!candidate_sentence.empty()) {
                int n = candidate_sentence.back();
                prob_not_blank = candidate.prob_not_blank * prob[n];
            }
            float prob_blank = candidate.prob() * prob[num_classes - 1];

            auto check_res = std::find_if(curr.begin(),
                                          curr.end(),
                                          [&candidate_sentence](const BeamElement& n) {
                                              return n.sentence == candidate_sentence;
                                          });
            if (check_res == std::end(curr)) {
                curr.push_back(BeamElement{candidate.sentence, prob_blank, prob_not_blank});
            } else {
                check_res->prob_not_blank  += prob_not_blank;
                if (check_res->prob_blank != 0.f) {
                    throw std::logic_error("Probability that the last char in CTC-sequence "
                                           "is the special blank char must be zero here");
                }
                check_res->prob_blank = prob_blank;
            }

            for (int i = 0; i < static_cast<int>(num_classes) - 1; i++) {
                auto extend = candidate_sentence;
                extend.push_back(i);

                if (candidate_sentence.size() > 0 && candidate.sentence.back() == i) {
                    prob_not_blank = prob[i] * candidate.prob_blank;
                } else {
                    prob_not_blank = prob[i] * candidate.prob();
                }

                auto check_res2 = std::find_if(curr.begin(),
                                              curr.end(),
                                              [&extend](const BeamElement &n) {
                                                  return n.sentence == extend;
                                              });
                if (check_res2 == std::end(curr)) {
                    curr.push_back(BeamElement{extend, 0.f, prob_not_blank});
                } else {
                    check_res2->prob_not_blank += prob_not_blank;
                }
            }
        }

        sort(curr.begin(), curr.end(), [](const BeamElement &a, const BeamElement &b) -> bool {
            return a.prob() > b.prob();
        });

        last.clear();
        int num_to_copy = std::min(bandwidth, static_cast<int>(curr.size()));
        for (int b = 0; b < num_to_copy; b++) {
            last.push_back(curr[b]);
        }
    }

    *conf = last[0].prob();
    std::string res="";
    for (const auto& idx: last[0].sentence) {
        res += alphabet[idx];
    }

    return res;
}

//////////////////////////////////////////////////////////////////////
} // anonymous namespace

namespace custom {
namespace {

//////////////////////////////////////////////////////////////////////
// Define networks for this sample
using GMat2 = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(TextDetection,
          <GMat2(cv::GMat)>,
          "sample.custom.text_detect");

G_API_NET(TextRecognition,
          <cv::GMat(cv::GMat)>,
          "sample.custom.text_recogn");

// Define custom operations
using GSize = cv::GOpaque<cv::Size>;
using GRRects = cv::GArray<cv::RotatedRect>;
G_API_OP(PostProcess,
        <GRRects(cv::GMat,cv::GMat,GSize,float,float)>,
        "sample.custom.text.post_proc") {
    static cv::GArrayDesc outMeta(const cv::GMatDesc &,
                                  const cv::GMatDesc &,
                                  const cv::GOpaqueDesc &,
                                  float,
                                  float) {
        return cv::empty_array_desc();
    }
};

using GMats = cv::GArray<cv::GMat>;
G_API_OP(CropLabels,
         <GMats(cv::GMat,GRRects,GSize)>,
         "sample.custom.text.crop") {
    static cv::GArrayDesc outMeta(const cv::GMatDesc &,
                                  const cv::GArrayDesc &,
                                  const cv::GOpaqueDesc &) {
        return cv::empty_array_desc();
    }
};

//////////////////////////////////////////////////////////////////////
// Implement custom operations
GAPI_OCV_KERNEL(OCVPostProcess, PostProcess) {
    static void run(const cv::Mat &link,
                    const cv::Mat &segm,
                    const cv::Size &img_size,
                    const float link_threshold,
                    const float segm_threshold,
                    std::vector<cv::RotatedRect> &out) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        const int kMinArea = 300;
        const int kMinHeight = 10;

        const float *link_data_pointer = link.ptr<float>();
        std::vector<float> link_data(link_data_pointer, link_data_pointer + link.total());
        link_data = transpose4d(link_data, dimsToShape(link.size), {0, 2, 3, 1});
        softmax(link_data);
        link_data = sliceAndGetSecondChannel(link_data);
        std::vector<int> new_link_data_shape = {
            link.size[0],
            link.size[2],
            link.size[3],
            link.size[1]/2,
        };

        const float *cls_data_pointer = segm.ptr<float>();
        std::vector<float> cls_data(cls_data_pointer, cls_data_pointer + segm.total());
        cls_data = transpose4d(cls_data, dimsToShape(segm.size), {0, 2, 3, 1});
        softmax(cls_data);
        cls_data = sliceAndGetSecondChannel(cls_data);
        std::vector<int> new_cls_data_shape = {
            segm.size[0],
            segm.size[2],
            segm.size[3],
            segm.size[1]/2,
        };

        out = maskToBoxes(decodeImageByJoin(cls_data, new_cls_data_shape,
                                            link_data, new_link_data_shape,
                                            segm_threshold, link_threshold),
                          static_cast<float>(kMinArea),
                          static_cast<float>(kMinHeight),
                          img_size);
    }

    static std::vector<std::size_t> dimsToShape(const cv::MatSize &sz) {
        const int n_dims = sz.dims();
        std::vector<std::size_t> result;
        result.reserve(n_dims);

        // cv::MatSize is not iterable...
        for (int i = 0; i < n_dims; i++) {
            result.emplace_back(static_cast<std::size_t>(sz[i]));
        }
        return result;
    }

    static void softmax(std::vector<float> &rdata) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        const size_t last_dim = 2;
        for (size_t i = 0 ; i < rdata.size(); i+=last_dim) {
            float m = std::max(rdata[i], rdata[i+1]);
            rdata[i] = std::exp(rdata[i] - m);
            rdata[i + 1] = std::exp(rdata[i + 1] - m);
            float s = rdata[i] + rdata[i + 1];
            rdata[i] /= s;
            rdata[i + 1] /= s;
        }
    }

    static std::vector<float> transpose4d(const std::vector<float> &data,
                                          const std::vector<size_t> &shape,
                                          const std::vector<size_t> &axes) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        if (shape.size() != axes.size())
            throw std::runtime_error("Shape and axes must have the same dimension.");

        for (size_t a : axes) {
            if (a >= shape.size())
                throw std::runtime_error("Axis must be less than dimension of shape.");
        }
        size_t total_size = shape[0]*shape[1]*shape[2]*shape[3];
        std::vector<size_t> steps {
            shape[axes[1]]*shape[axes[2]]*shape[axes[3]],
            shape[axes[2]]*shape[axes[3]],
            shape[axes[3]],
            1
         };

        size_t source_data_idx = 0;
        std::vector<float> new_data(total_size, 0);
        std::vector<size_t> ids(shape.size());
        for (ids[0] = 0; ids[0] < shape[0]; ids[0]++) {
            for (ids[1] = 0; ids[1] < shape[1]; ids[1]++) {
                for (ids[2] = 0; ids[2] < shape[2]; ids[2]++) {
                    for (ids[3]= 0; ids[3] < shape[3]; ids[3]++) {
                        size_t new_data_idx = ids[axes[0]]*steps[0] + ids[axes[1]]*steps[1] +
                            ids[axes[2]]*steps[2] + ids[axes[3]]*steps[3];
                        new_data[new_data_idx] = data[source_data_idx++];
                    }
                }
            }
        }
        return new_data;
    }

    static std::vector<float> sliceAndGetSecondChannel(const std::vector<float> &data) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        std::vector<float> new_data(data.size() / 2, 0);
        for (size_t i = 0; i < data.size() / 2; i++) {
            new_data[i] = data[2 * i + 1];
        }
        return new_data;
    }

    static void join(const int p1,
                     const int p2,
                     std::unordered_map<int, int> &group_mask) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        const int root1 = findRoot(p1, group_mask);
        const int root2 = findRoot(p2, group_mask);
        if (root1 != root2) {
            group_mask[root1] = root2;
        }
    }

    static cv::Mat decodeImageByJoin(const std::vector<float> &cls_data,
                                     const std::vector<int>   &cls_data_shape,
                                     const std::vector<float> &link_data,
                                     const std::vector<int>   &link_data_shape,
                                     float cls_conf_threshold,
                                     float link_conf_threshold) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        const int h = cls_data_shape[1];
        const int w = cls_data_shape[2];

        std::vector<uchar> pixel_mask(h * w, 0);
        std::unordered_map<int, int> group_mask;
        std::vector<cv::Point> points;
        for (int i = 0; i < static_cast<int>(pixel_mask.size()); i++) {
            pixel_mask[i] = cls_data[i] >= cls_conf_threshold;
            if (pixel_mask[i]) {
                points.emplace_back(i % w, i / w);
                group_mask[i] = -1;
            }
        }
        std::vector<uchar> link_mask(link_data.size(), 0);
        for (size_t i = 0; i < link_mask.size(); i++) {
            link_mask[i] = link_data[i] >= link_conf_threshold;
        }
        size_t neighbours = size_t(link_data_shape[3]);
        for (const auto &point : points) {
            size_t neighbour = 0;
            for (int ny = point.y - 1; ny <= point.y + 1; ny++) {
                for (int nx = point.x - 1; nx <= point.x + 1; nx++) {
                    if (nx == point.x && ny == point.y)
                        continue;
                    if (nx >= 0 && nx < w && ny >= 0 && ny < h) {
                        uchar pixel_value = pixel_mask[size_t(ny) * size_t(w) + size_t(nx)];
                        uchar link_value = link_mask[(size_t(point.y) * size_t(w) + size_t(point.x))
                                                     *neighbours + neighbour];
                        if (pixel_value && link_value) {
                            join(point.x + point.y * w, nx + ny * w, group_mask);
                        }
                    }
                    neighbour++;
                }
            }
        }
        return get_all(points, w, h, group_mask);
    }

    static cv::Mat get_all(const std::vector<cv::Point> &points,
                           const int w,
                           const int h,
                           std::unordered_map<int, int> &group_mask) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        std::unordered_map<int, int> root_map;
        cv::Mat mask(h, w, CV_32S, cv::Scalar(0));
        for (const auto &point : points) {
            int point_root = findRoot(point.x + point.y * w, group_mask);
            if (root_map.find(point_root) == root_map.end()) {
                root_map.emplace(point_root, static_cast<int>(root_map.size() + 1));
            }
            mask.at<int>(point.x + point.y * w) = root_map[point_root];
        }
        return mask;
    }

    static int findRoot(const int point,
                        std::unordered_map<int, int> &group_mask) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        int root = point;
        bool update_parent = false;
        while (group_mask.at(root) != -1) {
            root = group_mask.at(root);
            update_parent = true;
        }
        if (update_parent) {
            group_mask[point] = root;
        }
        return root;
    }

    static std::vector<cv::RotatedRect> maskToBoxes(const cv::Mat &mask,
                                                    const float min_area,
                                                    const float min_height,
                                                    const cv::Size &image_size) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        std::vector<cv::RotatedRect> bboxes;
        double min_val = 0.;
        double max_val = 0.;
        cv::minMaxLoc(mask, &min_val, &max_val);
        int max_bbox_idx = static_cast<int>(max_val);
        cv::Mat resized_mask;
        cv::resize(mask, resized_mask, image_size, 0, 0, cv::INTER_NEAREST);

        for (int i = 1; i <= max_bbox_idx; i++) {
            cv::Mat bbox_mask = resized_mask == i;
            std::vector<std::vector<cv::Point>> contours;

            cv::findContours(bbox_mask, contours, cv::RETR_CCOMP, cv::CHAIN_APPROX_SIMPLE);
            if (contours.empty())
                continue;
            cv::RotatedRect r = cv::minAreaRect(contours[0]);
            if (std::min(r.size.width, r.size.height) < min_height)
                continue;
            if (r.size.area() < min_area)
                continue;
            bboxes.emplace_back(r);
        }
        return bboxes;
    }
}; // GAPI_OCV_KERNEL(PostProcess)

GAPI_OCV_KERNEL(OCVCropLabels, CropLabels) {
    static void run(const cv::Mat &image,
                    const std::vector<cv::RotatedRect> &detections,
                    const cv::Size &outSize,
                    std::vector<cv::Mat> &out) {
        out.clear();
        out.reserve(detections.size());
        cv::Mat crop(outSize, CV_8UC3, cv::Scalar(0));
        cv::Mat gray(outSize, CV_8UC1, cv::Scalar(0));
        std::vector<int> blob_shape = {1,1,outSize.height,outSize.width};

        for (auto &&rr : detections) {
            std::vector<cv::Point2f> points(4);
            rr.points(points.data());

            const auto top_left_point_idx = topLeftPointIdx(points);
            cv::Point2f point0 = points[static_cast<size_t>(top_left_point_idx)];
            cv::Point2f point1 = points[(top_left_point_idx + 1) % 4];
            cv::Point2f point2 = points[(top_left_point_idx + 2) % 4];

            std::vector<cv::Point2f> from{point0, point1, point2};
            std::vector<cv::Point2f> to{
                cv::Point2f(0.0f, 0.0f),
                cv::Point2f(static_cast<float>(outSize.width-1), 0.0f),
                cv::Point2f(static_cast<float>(outSize.width-1),
                            static_cast<float>(outSize.height-1))
            };
            cv::Mat M = cv::getAffineTransform(from, to);
            cv::warpAffine(image, crop, M, outSize);
            cv::cvtColor(crop, gray, cv::COLOR_BGR2GRAY);

            cv::Mat blob;
            gray.convertTo(blob, CV_32F);
            out.push_back(blob.reshape(1, blob_shape)); // pass as 1,1,H,W instead of H,W
        }
    }

    static int topLeftPointIdx(const std::vector<cv::Point2f> &points) {
        // NOTE: Taken from the OMZ text detection sample almost as-is
        cv::Point2f most_left(std::numeric_limits<float>::max(),
                              std::numeric_limits<float>::max());
        cv::Point2f almost_most_left(std::numeric_limits<float>::max(),
                                     std::numeric_limits<float>::max());
        int most_left_idx = -1;
        int almost_most_left_idx = -1;

        for (size_t i = 0; i < points.size() ; i++) {
            if (most_left.x > points[i].x) {
                if (most_left.x < std::numeric_limits<float>::max()) {
                    almost_most_left = most_left;
                    almost_most_left_idx = most_left_idx;
                }
                most_left = points[i];
                most_left_idx = static_cast<int>(i);
            }
            if (almost_most_left.x > points[i].x && points[i] != most_left) {
                almost_most_left = points[i];
                almost_most_left_idx = static_cast<int>(i);
            }
        }

        if (almost_most_left.y < most_left.y) {
            most_left = almost_most_left;
            most_left_idx = almost_most_left_idx;
        }
        return most_left_idx;
    }

}; // GAPI_OCV_KERNEL(CropLabels)

} // anonymous namespace
} // namespace custom

namespace vis {
namespace {

void drawRotatedRect(cv::Mat &m, const cv::RotatedRect &rc) {
    std::vector<cv::Point2f> tmp_points(5);
    rc.points(tmp_points.data());
    tmp_points[4] = tmp_points[0];
    auto prev = tmp_points.begin(), it = prev+1;
    for (; it != tmp_points.end(); ++it) {
        cv::line(m, *prev, *it, cv::Scalar(50, 205, 50), 2);
        prev = it;
    }
}

void drawText(cv::Mat &m, const cv::RotatedRect &rc, const std::string &str) {
    const int    fface   = cv::FONT_HERSHEY_SIMPLEX;
    const double scale   = 0.7;
    const int    thick   = 1;
          int    base    = 0;
    const auto text_size = cv::getTextSize(str, fface, scale, thick, &base);

    std::vector<cv::Point2f> tmp_points(4);
    rc.points(tmp_points.data());
    const auto tl_point_idx = custom::OCVCropLabels::topLeftPointIdx(tmp_points);
    cv::Point text_pos = tmp_points[tl_point_idx];
    text_pos.x = std::max(0, text_pos.x);
    text_pos.y = std::max(text_size.height, text_pos.y);

    cv::rectangle(m,
                  text_pos + cv::Point{0, base},
                  text_pos + cv::Point{text_size.width, -text_size.height},
                  CV_RGB(50, 205, 50),
                  cv::FILLED);
    const auto white = CV_RGB(255, 255, 255);
    cv::putText(m, str, text_pos, fface, scale, white, thick, 8);
}

} // anonymous namespace
} // namespace vis

int main(int argc, char *argv[])
{
    cv::CommandLineParser cmd(argc, argv, keys);
    cmd.about(about);
    if (cmd.has("help")) {
        cmd.printMessage();
        return 0;
    }
    const auto input_file_name = cmd.get<std::string>("input");
    const auto tdet_model_path = cmd.get<std::string>("tdm");
    const auto trec_model_path = cmd.get<std::string>("trm");
    const auto tdet_target_dev = cmd.get<std::string>("tdd");
    const auto trec_target_dev = cmd.get<std::string>("trd");
    const auto ctc_beam_dec_bw = cmd.get<int>("bw");
    const auto dec_conf_thresh = cmd.get<double>("thr");

    const auto pad_symbol      = '#';
    const auto symbol_set      = cmd.get<std::string>("sset") + pad_symbol;

    cv::GMat in;
    cv::GOpaque<cv::Size> in_rec_sz;
    cv::GMat link, segm;
    std::tie(link, segm) = cv::gapi::infer<custom::TextDetection>(in);
    cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(in);
    cv::GArray<cv::RotatedRect> rrs = custom::PostProcess::on(link, segm, size, 0.8f, 0.8f);
    cv::GArray<cv::GMat> labels = custom::CropLabels::on(in, rrs, in_rec_sz);
    cv::GArray<cv::GMat> text = cv::gapi::infer2<custom::TextRecognition>(in, labels);

    cv::GComputation graph(cv::GIn(in, in_rec_sz),
                           cv::GOut(cv::gapi::copy(in), rrs, text));

    // Text detection network
    auto tdet_net = cv::gapi::ie::Params<custom::TextDetection> {
        tdet_model_path,                // path to topology IR
        weights_path(tdet_model_path),  // path to weights
        tdet_target_dev,                // device specifier
    }.cfgOutputLayers({"model/link_logits_/add", "model/segm_logits/add"});

    auto trec_net = cv::gapi::ie::Params<custom::TextRecognition> {
        trec_model_path,                // path to topology IR
        weights_path(trec_model_path),  // path to weights
        trec_target_dev,                // device specifier
    };
    auto networks = cv::gapi::networks(tdet_net, trec_net);

    auto kernels = cv::gapi::kernels< custom::OCVPostProcess
                                    , custom::OCVCropLabels
                                    >();
    auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks));

    std::cout << "Reading " << input_file_name << std::endl;

    // Input stream
    auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);

    // Text recognition input size (also an input parameter to the graph)
    auto in_rsz = cv::Size{ 120, 32 };

    // Set the pipeline source & start the pipeline
    pipeline.setSource(cv::gin(in_src, in_rsz));
    pipeline.start();

    // Declare the output data & run the processing loop
    cv::TickMeter tm;
    cv::Mat image;
    std::vector<cv::RotatedRect> out_rcs;
    std::vector<cv::Mat> out_text;

    tm.start();
    int frames = 0;
    while (pipeline.pull(cv::gout(image, out_rcs, out_text))) {
        frames++;

        CV_Assert(out_rcs.size() == out_text.size());
        const auto num_labels = out_rcs.size();

        std::vector<cv::Point2f> tmp_points(4);
        for (std::size_t l = 0; l < num_labels; l++) {
            // Decode the recognized text in the rectangle
            const auto &blob = out_text[l];
            const float *data = blob.ptr<float>();
            const auto sz = blob.total();
            double conf = 1.0;
            const std::string res = ctc_beam_dec_bw == 0
                ? CTCGreedyDecoder(data, sz, symbol_set, pad_symbol, &conf)
                : CTCBeamSearchDecoder(data, sz, symbol_set, &conf, ctc_beam_dec_bw);

            // Draw a bounding box for this rotated rectangle
            const auto &rc = out_rcs[l];
            vis::drawRotatedRect(image, rc);

            // Draw text, if decoded
            if (conf >= dec_conf_thresh) {
                vis::drawText(image, rc, res);
            }
        }
        tm.stop();
        cv::imshow("Out", image);
        cv::waitKey(1);
        tm.start();
    }
    tm.stop();
    std::cout << "Processed " << frames << " frames"
              << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
    return 0;
}