text_detection.cpp
26.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
#include <algorithm>
#include <cctype>
#include <cmath>
#include <iostream>
#include <limits>
#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/utility.hpp>
const std::string about =
"This is an OpenCV-based version of OMZ Text Detection example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ tdm | text-detection-0004.xml | Path to OpenVINO text detection model (.xml), versions 0003 and 0004 work }"
"{ tdd | CPU | Target device for the text detector (e.g. CPU, GPU, VPU, ...) }"
"{ trm | text-recognition-0012.xml | Path to OpenVINO text recognition model (.xml) }"
"{ trd | CPU | Target device for the text recognition (e.g. CPU, GPU, VPU, ...) }"
"{ bw | 0 | CTC beam search decoder bandwidth, if 0, a CTC greedy decoder is used}"
"{ sset | 0123456789abcdefghijklmnopqrstuvwxyz | Symbol set to use with text recognition decoder. Shouldn't contain symbol #. }"
"{ thr | 0.2 | Text recognition confidence threshold}"
;
namespace {
std::string weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
const auto ext = model_path.substr(sz - EXT_LEN);
CV_Assert(cv::toLowerCase(ext) == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
//////////////////////////////////////////////////////////////////////
// Taken from OMZ samples as-is
template<typename Iter>
void softmax_and_choose(Iter begin, Iter end, int *argmax, float *prob) {
auto max_element = std::max_element(begin, end);
*argmax = static_cast<int>(std::distance(begin, max_element));
float max_val = *max_element;
double sum = 0;
for (auto i = begin; i != end; i++) {
sum += std::exp((*i) - max_val);
}
if (std::fabs(sum) < std::numeric_limits<double>::epsilon()) {
throw std::logic_error("sum can't be equal to zero");
}
*prob = 1.0f / static_cast<float>(sum);
}
template<typename Iter>
std::vector<float> softmax(Iter begin, Iter end) {
std::vector<float> prob(end - begin, 0.f);
std::transform(begin, end, prob.begin(), [](float x) { return std::exp(x); });
float sum = std::accumulate(prob.begin(), prob.end(), 0.0f);
for (int i = 0; i < static_cast<int>(prob.size()); i++)
prob[i] /= sum;
return prob;
}
struct BeamElement {
std::vector<int> sentence; //!< The sequence of chars that will be a result of the beam element
float prob_blank; //!< The probability that the last char in CTC sequence
//!< for the beam element is the special blank char
float prob_not_blank; //!< The probability that the last char in CTC sequence
//!< for the beam element is NOT the special blank char
float prob() const { //!< The probability of the beam element.
return prob_blank + prob_not_blank;
}
};
std::string CTCGreedyDecoder(const float *data,
const std::size_t sz,
const std::string &alphabet,
const char pad_symbol,
double *conf) {
std::string res = "";
bool prev_pad = false;
*conf = 1;
const auto num_classes = alphabet.length();
for (auto it = data; it != (data+sz); it += num_classes) {
int argmax = 0;
float prob = 0.f;
softmax_and_choose(it, it + num_classes, &argmax, &prob);
(*conf) *= prob;
auto symbol = alphabet[argmax];
if (symbol != pad_symbol) {
if (res.empty() || prev_pad || (!res.empty() && symbol != res.back())) {
prev_pad = false;
res += symbol;
}
} else {
prev_pad = true;
}
}
return res;
}
std::string CTCBeamSearchDecoder(const float *data,
const std::size_t sz,
const std::string &alphabet,
double *conf,
int bandwidth) {
const auto num_classes = alphabet.length();
std::vector<BeamElement> curr;
std::vector<BeamElement> last;
last.push_back(BeamElement{std::vector<int>(), 1.f, 0.f});
for (auto it = data; it != (data+sz); it += num_classes) {
curr.clear();
std::vector<float> prob = softmax(it, it + num_classes);
for(const auto& candidate: last) {
float prob_not_blank = 0.f;
const std::vector<int>& candidate_sentence = candidate.sentence;
if (!candidate_sentence.empty()) {
int n = candidate_sentence.back();
prob_not_blank = candidate.prob_not_blank * prob[n];
}
float prob_blank = candidate.prob() * prob[num_classes - 1];
auto check_res = std::find_if(curr.begin(),
curr.end(),
[&candidate_sentence](const BeamElement& n) {
return n.sentence == candidate_sentence;
});
if (check_res == std::end(curr)) {
curr.push_back(BeamElement{candidate.sentence, prob_blank, prob_not_blank});
} else {
check_res->prob_not_blank += prob_not_blank;
if (check_res->prob_blank != 0.f) {
throw std::logic_error("Probability that the last char in CTC-sequence "
"is the special blank char must be zero here");
}
check_res->prob_blank = prob_blank;
}
for (int i = 0; i < static_cast<int>(num_classes) - 1; i++) {
auto extend = candidate_sentence;
extend.push_back(i);
if (candidate_sentence.size() > 0 && candidate.sentence.back() == i) {
prob_not_blank = prob[i] * candidate.prob_blank;
} else {
prob_not_blank = prob[i] * candidate.prob();
}
auto check_res2 = std::find_if(curr.begin(),
curr.end(),
[&extend](const BeamElement &n) {
return n.sentence == extend;
});
if (check_res2 == std::end(curr)) {
curr.push_back(BeamElement{extend, 0.f, prob_not_blank});
} else {
check_res2->prob_not_blank += prob_not_blank;
}
}
}
sort(curr.begin(), curr.end(), [](const BeamElement &a, const BeamElement &b) -> bool {
return a.prob() > b.prob();
});
last.clear();
int num_to_copy = std::min(bandwidth, static_cast<int>(curr.size()));
for (int b = 0; b < num_to_copy; b++) {
last.push_back(curr[b]);
}
}
*conf = last[0].prob();
std::string res="";
for (const auto& idx: last[0].sentence) {
res += alphabet[idx];
}
return res;
}
//////////////////////////////////////////////////////////////////////
} // anonymous namespace
namespace custom {
namespace {
//////////////////////////////////////////////////////////////////////
// Define networks for this sample
using GMat2 = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(TextDetection,
<GMat2(cv::GMat)>,
"sample.custom.text_detect");
G_API_NET(TextRecognition,
<cv::GMat(cv::GMat)>,
"sample.custom.text_recogn");
// Define custom operations
using GSize = cv::GOpaque<cv::Size>;
using GRRects = cv::GArray<cv::RotatedRect>;
G_API_OP(PostProcess,
<GRRects(cv::GMat,cv::GMat,GSize,float,float)>,
"sample.custom.text.post_proc") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &,
const cv::GMatDesc &,
const cv::GOpaqueDesc &,
float,
float) {
return cv::empty_array_desc();
}
};
using GMats = cv::GArray<cv::GMat>;
G_API_OP(CropLabels,
<GMats(cv::GMat,GRRects,GSize)>,
"sample.custom.text.crop") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &,
const cv::GArrayDesc &,
const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
//////////////////////////////////////////////////////////////////////
// Implement custom operations
GAPI_OCV_KERNEL(OCVPostProcess, PostProcess) {
static void run(const cv::Mat &link,
const cv::Mat &segm,
const cv::Size &img_size,
const float link_threshold,
const float segm_threshold,
std::vector<cv::RotatedRect> &out) {
// NOTE: Taken from the OMZ text detection sample almost as-is
const int kMinArea = 300;
const int kMinHeight = 10;
const float *link_data_pointer = link.ptr<float>();
std::vector<float> link_data(link_data_pointer, link_data_pointer + link.total());
link_data = transpose4d(link_data, dimsToShape(link.size), {0, 2, 3, 1});
softmax(link_data);
link_data = sliceAndGetSecondChannel(link_data);
std::vector<int> new_link_data_shape = {
link.size[0],
link.size[2],
link.size[3],
link.size[1]/2,
};
const float *cls_data_pointer = segm.ptr<float>();
std::vector<float> cls_data(cls_data_pointer, cls_data_pointer + segm.total());
cls_data = transpose4d(cls_data, dimsToShape(segm.size), {0, 2, 3, 1});
softmax(cls_data);
cls_data = sliceAndGetSecondChannel(cls_data);
std::vector<int> new_cls_data_shape = {
segm.size[0],
segm.size[2],
segm.size[3],
segm.size[1]/2,
};
out = maskToBoxes(decodeImageByJoin(cls_data, new_cls_data_shape,
link_data, new_link_data_shape,
segm_threshold, link_threshold),
static_cast<float>(kMinArea),
static_cast<float>(kMinHeight),
img_size);
}
static std::vector<std::size_t> dimsToShape(const cv::MatSize &sz) {
const int n_dims = sz.dims();
std::vector<std::size_t> result;
result.reserve(n_dims);
// cv::MatSize is not iterable...
for (int i = 0; i < n_dims; i++) {
result.emplace_back(static_cast<std::size_t>(sz[i]));
}
return result;
}
static void softmax(std::vector<float> &rdata) {
// NOTE: Taken from the OMZ text detection sample almost as-is
const size_t last_dim = 2;
for (size_t i = 0 ; i < rdata.size(); i+=last_dim) {
float m = std::max(rdata[i], rdata[i+1]);
rdata[i] = std::exp(rdata[i] - m);
rdata[i + 1] = std::exp(rdata[i + 1] - m);
float s = rdata[i] + rdata[i + 1];
rdata[i] /= s;
rdata[i + 1] /= s;
}
}
static std::vector<float> transpose4d(const std::vector<float> &data,
const std::vector<size_t> &shape,
const std::vector<size_t> &axes) {
// NOTE: Taken from the OMZ text detection sample almost as-is
if (shape.size() != axes.size())
throw std::runtime_error("Shape and axes must have the same dimension.");
for (size_t a : axes) {
if (a >= shape.size())
throw std::runtime_error("Axis must be less than dimension of shape.");
}
size_t total_size = shape[0]*shape[1]*shape[2]*shape[3];
std::vector<size_t> steps {
shape[axes[1]]*shape[axes[2]]*shape[axes[3]],
shape[axes[2]]*shape[axes[3]],
shape[axes[3]],
1
};
size_t source_data_idx = 0;
std::vector<float> new_data(total_size, 0);
std::vector<size_t> ids(shape.size());
for (ids[0] = 0; ids[0] < shape[0]; ids[0]++) {
for (ids[1] = 0; ids[1] < shape[1]; ids[1]++) {
for (ids[2] = 0; ids[2] < shape[2]; ids[2]++) {
for (ids[3]= 0; ids[3] < shape[3]; ids[3]++) {
size_t new_data_idx = ids[axes[0]]*steps[0] + ids[axes[1]]*steps[1] +
ids[axes[2]]*steps[2] + ids[axes[3]]*steps[3];
new_data[new_data_idx] = data[source_data_idx++];
}
}
}
}
return new_data;
}
static std::vector<float> sliceAndGetSecondChannel(const std::vector<float> &data) {
// NOTE: Taken from the OMZ text detection sample almost as-is
std::vector<float> new_data(data.size() / 2, 0);
for (size_t i = 0; i < data.size() / 2; i++) {
new_data[i] = data[2 * i + 1];
}
return new_data;
}
static void join(const int p1,
const int p2,
std::unordered_map<int, int> &group_mask) {
// NOTE: Taken from the OMZ text detection sample almost as-is
const int root1 = findRoot(p1, group_mask);
const int root2 = findRoot(p2, group_mask);
if (root1 != root2) {
group_mask[root1] = root2;
}
}
static cv::Mat decodeImageByJoin(const std::vector<float> &cls_data,
const std::vector<int> &cls_data_shape,
const std::vector<float> &link_data,
const std::vector<int> &link_data_shape,
float cls_conf_threshold,
float link_conf_threshold) {
// NOTE: Taken from the OMZ text detection sample almost as-is
const int h = cls_data_shape[1];
const int w = cls_data_shape[2];
std::vector<uchar> pixel_mask(h * w, 0);
std::unordered_map<int, int> group_mask;
std::vector<cv::Point> points;
for (int i = 0; i < static_cast<int>(pixel_mask.size()); i++) {
pixel_mask[i] = cls_data[i] >= cls_conf_threshold;
if (pixel_mask[i]) {
points.emplace_back(i % w, i / w);
group_mask[i] = -1;
}
}
std::vector<uchar> link_mask(link_data.size(), 0);
for (size_t i = 0; i < link_mask.size(); i++) {
link_mask[i] = link_data[i] >= link_conf_threshold;
}
size_t neighbours = size_t(link_data_shape[3]);
for (const auto &point : points) {
size_t neighbour = 0;
for (int ny = point.y - 1; ny <= point.y + 1; ny++) {
for (int nx = point.x - 1; nx <= point.x + 1; nx++) {
if (nx == point.x && ny == point.y)
continue;
if (nx >= 0 && nx < w && ny >= 0 && ny < h) {
uchar pixel_value = pixel_mask[size_t(ny) * size_t(w) + size_t(nx)];
uchar link_value = link_mask[(size_t(point.y) * size_t(w) + size_t(point.x))
*neighbours + neighbour];
if (pixel_value && link_value) {
join(point.x + point.y * w, nx + ny * w, group_mask);
}
}
neighbour++;
}
}
}
return get_all(points, w, h, group_mask);
}
static cv::Mat get_all(const std::vector<cv::Point> &points,
const int w,
const int h,
std::unordered_map<int, int> &group_mask) {
// NOTE: Taken from the OMZ text detection sample almost as-is
std::unordered_map<int, int> root_map;
cv::Mat mask(h, w, CV_32S, cv::Scalar(0));
for (const auto &point : points) {
int point_root = findRoot(point.x + point.y * w, group_mask);
if (root_map.find(point_root) == root_map.end()) {
root_map.emplace(point_root, static_cast<int>(root_map.size() + 1));
}
mask.at<int>(point.x + point.y * w) = root_map[point_root];
}
return mask;
}
static int findRoot(const int point,
std::unordered_map<int, int> &group_mask) {
// NOTE: Taken from the OMZ text detection sample almost as-is
int root = point;
bool update_parent = false;
while (group_mask.at(root) != -1) {
root = group_mask.at(root);
update_parent = true;
}
if (update_parent) {
group_mask[point] = root;
}
return root;
}
static std::vector<cv::RotatedRect> maskToBoxes(const cv::Mat &mask,
const float min_area,
const float min_height,
const cv::Size &image_size) {
// NOTE: Taken from the OMZ text detection sample almost as-is
std::vector<cv::RotatedRect> bboxes;
double min_val = 0.;
double max_val = 0.;
cv::minMaxLoc(mask, &min_val, &max_val);
int max_bbox_idx = static_cast<int>(max_val);
cv::Mat resized_mask;
cv::resize(mask, resized_mask, image_size, 0, 0, cv::INTER_NEAREST);
for (int i = 1; i <= max_bbox_idx; i++) {
cv::Mat bbox_mask = resized_mask == i;
std::vector<std::vector<cv::Point>> contours;
cv::findContours(bbox_mask, contours, cv::RETR_CCOMP, cv::CHAIN_APPROX_SIMPLE);
if (contours.empty())
continue;
cv::RotatedRect r = cv::minAreaRect(contours[0]);
if (std::min(r.size.width, r.size.height) < min_height)
continue;
if (r.size.area() < min_area)
continue;
bboxes.emplace_back(r);
}
return bboxes;
}
}; // GAPI_OCV_KERNEL(PostProcess)
GAPI_OCV_KERNEL(OCVCropLabels, CropLabels) {
static void run(const cv::Mat &image,
const std::vector<cv::RotatedRect> &detections,
const cv::Size &outSize,
std::vector<cv::Mat> &out) {
out.clear();
out.reserve(detections.size());
cv::Mat crop(outSize, CV_8UC3, cv::Scalar(0));
cv::Mat gray(outSize, CV_8UC1, cv::Scalar(0));
std::vector<int> blob_shape = {1,1,outSize.height,outSize.width};
for (auto &&rr : detections) {
std::vector<cv::Point2f> points(4);
rr.points(points.data());
const auto top_left_point_idx = topLeftPointIdx(points);
cv::Point2f point0 = points[static_cast<size_t>(top_left_point_idx)];
cv::Point2f point1 = points[(top_left_point_idx + 1) % 4];
cv::Point2f point2 = points[(top_left_point_idx + 2) % 4];
std::vector<cv::Point2f> from{point0, point1, point2};
std::vector<cv::Point2f> to{
cv::Point2f(0.0f, 0.0f),
cv::Point2f(static_cast<float>(outSize.width-1), 0.0f),
cv::Point2f(static_cast<float>(outSize.width-1),
static_cast<float>(outSize.height-1))
};
cv::Mat M = cv::getAffineTransform(from, to);
cv::warpAffine(image, crop, M, outSize);
cv::cvtColor(crop, gray, cv::COLOR_BGR2GRAY);
cv::Mat blob;
gray.convertTo(blob, CV_32F);
out.push_back(blob.reshape(1, blob_shape)); // pass as 1,1,H,W instead of H,W
}
}
static int topLeftPointIdx(const std::vector<cv::Point2f> &points) {
// NOTE: Taken from the OMZ text detection sample almost as-is
cv::Point2f most_left(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max());
cv::Point2f almost_most_left(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max());
int most_left_idx = -1;
int almost_most_left_idx = -1;
for (size_t i = 0; i < points.size() ; i++) {
if (most_left.x > points[i].x) {
if (most_left.x < std::numeric_limits<float>::max()) {
almost_most_left = most_left;
almost_most_left_idx = most_left_idx;
}
most_left = points[i];
most_left_idx = static_cast<int>(i);
}
if (almost_most_left.x > points[i].x && points[i] != most_left) {
almost_most_left = points[i];
almost_most_left_idx = static_cast<int>(i);
}
}
if (almost_most_left.y < most_left.y) {
most_left = almost_most_left;
most_left_idx = almost_most_left_idx;
}
return most_left_idx;
}
}; // GAPI_OCV_KERNEL(CropLabels)
} // anonymous namespace
} // namespace custom
namespace vis {
namespace {
void drawRotatedRect(cv::Mat &m, const cv::RotatedRect &rc) {
std::vector<cv::Point2f> tmp_points(5);
rc.points(tmp_points.data());
tmp_points[4] = tmp_points[0];
auto prev = tmp_points.begin(), it = prev+1;
for (; it != tmp_points.end(); ++it) {
cv::line(m, *prev, *it, cv::Scalar(50, 205, 50), 2);
prev = it;
}
}
void drawText(cv::Mat &m, const cv::RotatedRect &rc, const std::string &str) {
const int fface = cv::FONT_HERSHEY_SIMPLEX;
const double scale = 0.7;
const int thick = 1;
int base = 0;
const auto text_size = cv::getTextSize(str, fface, scale, thick, &base);
std::vector<cv::Point2f> tmp_points(4);
rc.points(tmp_points.data());
const auto tl_point_idx = custom::OCVCropLabels::topLeftPointIdx(tmp_points);
cv::Point text_pos = tmp_points[tl_point_idx];
text_pos.x = std::max(0, text_pos.x);
text_pos.y = std::max(text_size.height, text_pos.y);
cv::rectangle(m,
text_pos + cv::Point{0, base},
text_pos + cv::Point{text_size.width, -text_size.height},
CV_RGB(50, 205, 50),
cv::FILLED);
const auto white = CV_RGB(255, 255, 255);
cv::putText(m, str, text_pos, fface, scale, white, thick, 8);
}
} // anonymous namespace
} // namespace vis
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
const auto input_file_name = cmd.get<std::string>("input");
const auto tdet_model_path = cmd.get<std::string>("tdm");
const auto trec_model_path = cmd.get<std::string>("trm");
const auto tdet_target_dev = cmd.get<std::string>("tdd");
const auto trec_target_dev = cmd.get<std::string>("trd");
const auto ctc_beam_dec_bw = cmd.get<int>("bw");
const auto dec_conf_thresh = cmd.get<double>("thr");
const auto pad_symbol = '#';
const auto symbol_set = cmd.get<std::string>("sset") + pad_symbol;
cv::GMat in;
cv::GOpaque<cv::Size> in_rec_sz;
cv::GMat link, segm;
std::tie(link, segm) = cv::gapi::infer<custom::TextDetection>(in);
cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(in);
cv::GArray<cv::RotatedRect> rrs = custom::PostProcess::on(link, segm, size, 0.8f, 0.8f);
cv::GArray<cv::GMat> labels = custom::CropLabels::on(in, rrs, in_rec_sz);
cv::GArray<cv::GMat> text = cv::gapi::infer2<custom::TextRecognition>(in, labels);
cv::GComputation graph(cv::GIn(in, in_rec_sz),
cv::GOut(cv::gapi::copy(in), rrs, text));
// Text detection network
auto tdet_net = cv::gapi::ie::Params<custom::TextDetection> {
tdet_model_path, // path to topology IR
weights_path(tdet_model_path), // path to weights
tdet_target_dev, // device specifier
}.cfgOutputLayers({"model/link_logits_/add", "model/segm_logits/add"});
auto trec_net = cv::gapi::ie::Params<custom::TextRecognition> {
trec_model_path, // path to topology IR
weights_path(trec_model_path), // path to weights
trec_target_dev, // device specifier
};
auto networks = cv::gapi::networks(tdet_net, trec_net);
auto kernels = cv::gapi::kernels< custom::OCVPostProcess
, custom::OCVCropLabels
>();
auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks));
std::cout << "Reading " << input_file_name << std::endl;
// Input stream
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);
// Text recognition input size (also an input parameter to the graph)
auto in_rsz = cv::Size{ 120, 32 };
// Set the pipeline source & start the pipeline
pipeline.setSource(cv::gin(in_src, in_rsz));
pipeline.start();
// Declare the output data & run the processing loop
cv::TickMeter tm;
cv::Mat image;
std::vector<cv::RotatedRect> out_rcs;
std::vector<cv::Mat> out_text;
tm.start();
int frames = 0;
while (pipeline.pull(cv::gout(image, out_rcs, out_text))) {
frames++;
CV_Assert(out_rcs.size() == out_text.size());
const auto num_labels = out_rcs.size();
std::vector<cv::Point2f> tmp_points(4);
for (std::size_t l = 0; l < num_labels; l++) {
// Decode the recognized text in the rectangle
const auto &blob = out_text[l];
const float *data = blob.ptr<float>();
const auto sz = blob.total();
double conf = 1.0;
const std::string res = ctc_beam_dec_bw == 0
? CTCGreedyDecoder(data, sz, symbol_set, pad_symbol, &conf)
: CTCBeamSearchDecoder(data, sz, symbol_set, &conf, ctc_beam_dec_bw);
// Draw a bounding box for this rotated rectangle
const auto &rc = out_rcs[l];
vis::drawRotatedRect(image, rc);
// Draw text, if decoded
if (conf >= dec_conf_thresh) {
vis::drawText(image, rc, res);
}
}
tm.stop();
cv::imshow("Out", image);
cv::waitKey(1);
tm.start();
}
tm.stop();
std::cout << "Processed " << frames << " frames"
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}