giebackend.cpp
57.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#include "precomp.hpp"
// needs to be included regardless if IE is present or not
// (cv::gapi::ie::backend() is still there and is defined always)
#include "backends/ie/giebackend.hpp"
#ifdef HAVE_INF_ENGINE
#if INF_ENGINE_RELEASE <= 2019010000
# error G-API IE module supports only OpenVINO IE >= 2019 R1
#endif
#include <functional>
#include <unordered_set>
#include <atomic>
#include <ade/util/algorithm.hpp>
#include <ade/util/range.hpp>
#include <ade/util/zip_range.hpp>
#include <ade/util/chain_range.hpp>
#include <ade/typed_graph.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/gframe.hpp>
#include "compiler/gobjref.hpp"
#include "compiler/gmodel.hpp"
#include "backends/ie/util.hpp"
#include "backends/ie/giebackend/giewrapper.hpp"
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
#include "logger.hpp"
#if INF_ENGINE_RELEASE < 2021010000
#include "ie_compound_blob.h"
#endif
#if defined(HAVE_TBB)
# include <tbb/concurrent_queue.h> // FIXME: drop it from here!
template<typename T> using QueueClass = tbb::concurrent_bounded_queue<T>;
#else
# include "executor/conc_queue.hpp"
template<typename T> using QueueClass = cv::gapi::own::concurrent_bounded_queue<T>;
#endif // TBB
#include "utils/itt.hpp"
namespace IE = InferenceEngine;
namespace {
inline IE::ROI toIE(const cv::Rect &rc) {
return IE::ROI
{ 0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
}
inline IE::SizeVector toIE(const cv::MatSize &sz) {
return cv::to_own<IE::SizeVector::value_type>(sz);
}
inline std::vector<int> toCV(const IE::SizeVector &vsz) {
std::vector<int> result;
result.reserve(vsz.size());
for (auto sz : vsz) {
result.push_back(ade::util::checked_cast<int>(sz));
}
return result;
}
inline IE::Layout toIELayout(const std::size_t ndims) {
static const IE::Layout lts[] = {
IE::Layout::SCALAR,
IE::Layout::C,
IE::Layout::NC,
IE::Layout::CHW,
IE::Layout::NCHW,
IE::Layout::NCDHW,
};
// FIXME: This is not really a good conversion,
// since it may also stand for NHWC/HW/CN/NDHWC data
CV_Assert(ndims < sizeof(lts) / sizeof(lts[0]));
return lts[ndims];
}
inline IE::Precision toIE(int depth) {
switch (depth) {
case CV_8U: return IE::Precision::U8;
case CV_32S: return IE::Precision::I32;
case CV_32F: return IE::Precision::FP32;
case CV_16F: return IE::Precision::FP16;
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return IE::Precision::UNSPECIFIED;
}
inline int toCV(IE::Precision prec) {
switch (prec) {
case IE::Precision::U8: return CV_8U;
case IE::Precision::FP32: return CV_32F;
case IE::Precision::I32: return CV_32S;
case IE::Precision::I64: return CV_32S;
case IE::Precision::FP16: return CV_16F;
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return -1;
}
inline IE::TensorDesc toIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
const auto &sz = mat.size;
// NB: For some reason RGB image is 2D image
// (since channel component is not counted here).
// Note: regular 2D vectors also fall into this category
if (sz.dims() == 2 && hint == cv::gapi::ie::TraitAs::IMAGE)
{
// NB: This logic is mainly taken from IE samples
const size_t channels = mat.channels();
const size_t height = mat.size().height;
const size_t width = mat.size().width;
const size_t strideH = mat.step1();
IE::BlockingDesc bdesc({1, height, width, channels} /* blocking dims */,
{0, 2, 3, 1} /* order for NHWC */,
0 /* offset */,
{0, 0, 0, 0} /* offsets for dims */,
{strideH * height, strideH, channels, 1} /* strides for dims */);
return IE::TensorDesc(toIE(mat.depth()),
IE::SizeVector{1, channels, height, width}, bdesc);
}
return IE::TensorDesc(toIE(mat.depth()), toIE(sz), toIELayout(sz.dims()));
}
inline IE::Blob::Ptr wrapIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
const auto tDesc = toIE(mat, hint);
switch (mat.depth()) {
// NB: Seems there's no way to create an untyped (T-less) Blob::Ptr
// in IE given only precision via TensorDesc. So we have to do this:
#define HANDLE(E,T) \
case CV_##E: return IE::make_shared_blob<T>(tDesc, const_cast<T*>(mat.ptr<T>()))
HANDLE(8U, uint8_t);
HANDLE(32F, float);
HANDLE(32S, int);
HANDLE(16F, int16_t);
#undef HANDLE
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return IE::Blob::Ptr{};
}
inline IE::Blob::Ptr wrapIE(const cv::MediaFrame::View& view,
const cv::GFrameDesc& desc) {
switch (desc.fmt) {
case cv::MediaFormat::BGR: {
auto bgr = cv::Mat(desc.size, CV_8UC3, view.ptr[0], view.stride[0]);
return wrapIE(bgr, cv::gapi::ie::TraitAs::IMAGE);
}
case cv::MediaFormat::NV12: {
auto y_plane = cv::Mat(desc.size, CV_8UC1, view.ptr[0], view.stride[0]);
auto uv_plane = cv::Mat(desc.size / 2, CV_8UC2, view.ptr[1], view.stride[1]);
return cv::gapi::ie::util::to_ie(y_plane, uv_plane);
}
default:
GAPI_Assert(false && "Unsupported media format for IE backend");
}
GAPI_Assert(false);
}
template<class MatType>
inline void copyFromIE(const IE::Blob::Ptr &blob, MatType &mat) {
switch (blob->getTensorDesc().getPrecision()) {
#define HANDLE(E,T) \
case IE::Precision::E: std::copy_n(blob->buffer().as<T*>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(U8, uint8_t);
HANDLE(FP32, float);
HANDLE(I32, int);
HANDLE(FP16, cv::float16_t);
#undef HANDLE
case IE::Precision::I64: {
GAPI_LOG_WARNING(NULL, "INT64 isn't supported for cv::Mat. Conversion to INT32 is used.");
cv::gimpl::convertInt64ToInt32(blob->buffer().as<int64_t*>(),
reinterpret_cast<int*>(mat.data),
mat.total());
break;
}
default: GAPI_Assert(false && "IE. Unsupported data type");
}
}
// IE-specific metadata, represents a network with its parameters
struct IEUnit {
static const char *name() { return "IEModelConfig"; }
cv::gapi::ie::detail::ParamDesc params;
IE::CNNNetwork net;
IE::InputsDataMap inputs;
IE::OutputsDataMap outputs;
IE::ExecutableNetwork this_network;
cv::gimpl::ie::wrap::Plugin this_plugin;
InferenceEngine::RemoteContext::Ptr rctx = nullptr;
explicit IEUnit(const cv::gapi::ie::detail::ParamDesc &pp)
: params(pp) {
InferenceEngine::ParamMap* ctx_params =
cv::util::any_cast<InferenceEngine::ParamMap>(¶ms.context_config);
if (ctx_params != nullptr) {
auto ie_core = cv::gimpl::ie::wrap::getCore();
rctx = ie_core.CreateContext(params.device_id, *ctx_params);
}
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
net = cv::gimpl::ie::wrap::readNetwork(params);
inputs = net.getInputsInfo();
outputs = net.getOutputsInfo();
} else if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import) {
this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
this_plugin.SetConfig(params.config);
this_network = cv::gimpl::ie::wrap::importNetwork(this_plugin, params, rctx);
if (!params.reshape_table.empty() || !params.layer_names_to_reshape.empty()) {
GAPI_LOG_WARNING(NULL, "Reshape isn't supported for imported network");
}
} else {
cv::util::throw_error(std::logic_error("Unsupported ParamDesc::Kind"));
}
// The practice shows that not all inputs and not all outputs
// are mandatory to specify in IE model.
// So what we're concerned here about is:
// if operation's (not topology's) input/output number is
// greater than 1, then we do care about input/output layer
// names. Otherwise, names are picked up automatically.
// TODO: Probably this check could be done at the API entry point? (gnet)
if (params.num_in > 1u && params.num_in != params.input_names.size()) {
cv::util::throw_error(std::logic_error("Please specify input layer names for "
+ params.model_path));
}
if (params.num_out > 1u && params.num_out != params.output_names.size()) {
cv::util::throw_error(std::logic_error("Please specify output layer names for "
+ params.model_path));
}
if (params.num_in == 1u && params.input_names.empty()) {
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
params.input_names = { inputs.begin()->first };
} else {
params.input_names = { this_network.GetInputsInfo().begin()->first };
}
}
if (params.num_out == 1u && params.output_names.empty()) {
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
params.output_names = { outputs.begin()->first };
} else {
params.output_names = { this_network.GetOutputsInfo().begin()->first };
}
}
if (!params.reshape_table.empty()) {
GAPI_Assert((params.reshape_table.size() + params.layer_names_to_reshape.size()) <=
params.num_in &&
"Number of layers to reshape must be less than or equal to number of inputs");
}
}
// This method is [supposed to be] called at Island compilation stage
cv::gimpl::ie::IECompiled compile() const {
IEUnit* non_const_this = const_cast<IEUnit*>(this);
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
// FIXME: In case importNetwork for fill inputs/outputs need to obtain ExecutableNetwork, but
// for loadNetwork they can be obtained by using readNetwork
non_const_this->this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
non_const_this->this_plugin.SetConfig(params.config);
non_const_this->this_network = cv::gimpl::ie::wrap::loadNetwork(non_const_this->this_plugin,
net, params, rctx);
}
return {params, this_plugin, this_network};
}
};
class IECallContext
{
public:
IECallContext(const IEUnit & unit,
cv::gimpl::GIslandExecutable::IOutput & output,
const cv::GArgs & args,
const std::vector<cv::gimpl::RcDesc> & outs,
std::vector<cv::gimpl::GIslandExecutable::InObj> && input_objs,
std::vector<cv::gimpl::GIslandExecutable::OutObj> && output_objs);
const cv::GArgs& inArgs() const;
// Generic accessor API
template<typename T>
const T& inArg(std::size_t input) const {
return m_args.at(input).get<T>();
}
template<typename T>
std::vector<T>& outVecR(std::size_t output) {
return outVecRef(output).wref<T>();
}
// Syntax sugar
cv::GShape inShape(std::size_t input) const;
const cv::Mat& inMat (std::size_t input) const;
const cv::MediaFrame& inFrame(std::size_t input) const;
const cv::GRunArg& input (std::size_t idx) const;
cv::GRunArgP output (std::size_t idx);
cv::Mat& outMatR(std::size_t idx);
const IEUnit &uu;
cv::gimpl::GIslandExecutable::IOutput &out;
// NB: Need to gurantee that MediaFrame::View don't die until request is over.
using Views = std::vector<std::unique_ptr<cv::MediaFrame::View>>;
Views views;
private:
cv::detail::VectorRef& outVecRef(std::size_t idx);
cv::GArg packArg(const cv::GArg &arg);
// To store input/output data from frames
std::vector<cv::gimpl::GIslandExecutable::InObj> m_input_objs;
std::vector<cv::gimpl::GIslandExecutable::OutObj> m_output_objs;
// To simplify access to cv::Mat inside cv::RMat
cv::gimpl::Mag m_res;
// FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
// FIXME: check if the above applies to this backend (taken from CPU)
std::unordered_map<std::size_t, cv::GRunArgP> m_results;
// Input parameters passed to an inference operation.
cv::GArgs m_args;
cv::GShapes m_in_shapes;
};
IECallContext::IECallContext(const IEUnit & unit,
cv::gimpl::GIslandExecutable::IOutput & output,
const cv::GArgs & args,
const std::vector<cv::gimpl::RcDesc> & outs,
std::vector<cv::gimpl::GIslandExecutable::InObj> && input_objs,
std::vector<cv::gimpl::GIslandExecutable::OutObj> && output_objs)
: uu(unit), out(output), m_input_objs(std::move(input_objs)), m_output_objs(std::move(output_objs))
{
for (auto& it : m_input_objs) cv::gimpl::magazine::bindInArg (m_res, it.first, it.second);
for (auto& it : m_output_objs) cv::gimpl::magazine::bindOutArg(m_res, it.first, it.second);
m_args.reserve(args.size());
using namespace std::placeholders;
ade::util::transform(args,
std::back_inserter(m_args),
std::bind(&IECallContext::packArg, this, _1));
ade::util::transform(args, std::back_inserter(m_in_shapes),
[](const cv::GArg& arg) {
return arg.get<cv::gimpl::RcDesc>().shape;
});
for (const auto out_it : ade::util::indexed(outs)) {
// FIXME: Can the same GArg type resolution mechanism be reused here?
const auto port = ade::util::index(out_it);
const auto desc = ade::util::value(out_it);
m_results[port] = cv::gimpl::magazine::getObjPtr(m_res, desc);
}
}
const cv::GArgs& IECallContext::inArgs() const {
return m_args;
}
cv::GShape IECallContext::inShape(std::size_t i) const {
return m_in_shapes[i];
}
const cv::Mat& IECallContext::inMat(std::size_t input) const {
return inArg<cv::Mat>(input);
}
const cv::MediaFrame& IECallContext::inFrame(std::size_t input) const {
return inArg<cv::MediaFrame>(input);
}
cv::Mat& IECallContext::outMatR(std::size_t idx) {
return *cv::util::get<cv::Mat*>(m_results.at(idx));
}
cv::GRunArgP IECallContext::output(std::size_t idx) {
return m_output_objs[idx].second;
};
const cv::GRunArg& IECallContext::input(std::size_t idx) const {
return m_input_objs[idx].second;
}
cv::detail::VectorRef& IECallContext::outVecRef(std::size_t idx) {
return cv::util::get<cv::detail::VectorRef>(m_results.at(idx));
}
cv::GArg IECallContext::packArg(const cv::GArg &arg) {
// No API placeholders allowed at this point
// FIXME: this check has to be done somewhere in compilation stage.
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
&& arg.kind != cv::detail::ArgKind::GSCALAR
&& arg.kind != cv::detail::ArgKind::GARRAY);
if (arg.kind != cv::detail::ArgKind::GOBJREF) {
cv::util::throw_error(std::logic_error("Inference supports G-types ONLY!"));
}
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
// Wrap associated CPU object (either host or an internal one)
// FIXME: object can be moved out!!! GExecutor faced that.
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
switch (ref.shape)
{
case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>()[ref.id]);
// Note: .at() is intentional for GArray as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
// Note: .at() is intentional for GOpaque as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
case cv::GShape::GFRAME: return cv::GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
default:
cv::util::throw_error(std::logic_error("Unsupported GShape type"));
break;
}
}
struct IECallable {
static const char *name() { return "IERequestCallable"; }
using Run = std::function<void(std::shared_ptr<IECallContext>, cv::gimpl::ie::RequestPool&)>;
Run run;
};
struct KImpl {
cv::gimpl::CustomMetaFunction::CM customMetaFunc;
IECallable::Run run;
};
// FIXME: Is there a way to take a typed graph (our GModel),
// and create a new typed graph _ATOP_ of that (by extending with a couple of
// new types?).
// Alternatively, is there a way to compose types graphs?
//
// If not, we need to introduce that!
using GIEModel = ade::TypedGraph
< cv::gimpl::Protocol
, cv::gimpl::Op
, cv::gimpl::NetworkParams
, cv::gimpl::CustomMetaFunction
, IEUnit
, IECallable
>;
// FIXME: Same issue with Typed and ConstTyped
using GConstGIEModel = ade::ConstTypedGraph
< cv::gimpl::Protocol
, cv::gimpl::Op
, cv::gimpl::NetworkParams
, cv::gimpl::CustomMetaFunction
, IEUnit
, IECallable
>;
inline IE::Blob::Ptr extractRemoteBlob(IECallContext& ctx, std::size_t i) {
GAPI_Assert(ctx.inShape(i) == cv::GShape::GFRAME &&
"Remote blob is supported for MediaFrame only");
cv::util::any any_blob_params = ctx.inFrame(i).blobParams();
auto ie_core = cv::gimpl::ie::wrap::getCore();
using ParamType = std::pair<InferenceEngine::TensorDesc,
InferenceEngine::ParamMap>;
ParamType* blob_params = cv::util::any_cast<ParamType>(&any_blob_params);
if (blob_params == nullptr) {
GAPI_Assert(false && "Incorrect type of blobParams: "
"expected std::pair<InferenceEngine::TensorDesc,"
"InferenceEngine::ParamMap>");
}
return ctx.uu.rctx->CreateBlob(blob_params->first,
blob_params->second);
}
inline IE::Blob::Ptr extractBlob(IECallContext& ctx, std::size_t i) {
if (ctx.uu.rctx != nullptr) {
return extractRemoteBlob(ctx, i);
}
switch (ctx.inShape(i)) {
case cv::GShape::GFRAME: {
const auto& frame = ctx.inFrame(i);
ctx.views.emplace_back(new cv::MediaFrame::View(frame.access(cv::MediaFrame::Access::R)));
return wrapIE(*(ctx.views.back()), frame.desc());
}
case cv::GShape::GMAT: {
return wrapIE(ctx.inMat(i), cv::gapi::ie::TraitAs::IMAGE);
}
default:
GAPI_Assert("Unsupported input shape for IE backend");
}
GAPI_Assert(false);
}
static void setBlob(InferenceEngine::InferRequest& req,
cv::gapi::ie::detail::ParamDesc::Kind kind,
const std::string& layer_name,
IE::Blob::Ptr blob) {
// NB: In case importNetwork preprocessing must be
// passed as SetBlob argument.
if (kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
req.SetBlob(layer_name, blob);
} else {
GAPI_Assert(kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
req.SetBlob(layer_name, blob, info);
}
}
} // anonymous namespace
std::vector<InferenceEngine::InferRequest> cv::gimpl::ie::IECompiled::createInferRequests() {
std::vector<InferenceEngine::InferRequest> requests;
requests.reserve(params.nireq);
for (size_t i = 0; i < params.nireq; ++i) {
requests.push_back(this_network.CreateInferRequest());
auto& request = requests.back();
// Bind const data to infer request
for (auto &&p : params.const_inputs) {
// FIXME: SetBlob is known to be inefficient,
// it is worth to make a customizable "initializer" and pass the
// cv::Mat-wrapped blob there to support IE's optimal "GetBlob idiom"
// Still, constant data is to set only once.
request.SetBlob(p.first, wrapIE(p.second.first, p.second.second));
}
}
return requests;
}
class cv::gimpl::ie::RequestPool {
public:
using RunF = std::function<void(InferenceEngine::InferRequest&)>;
using CallbackF = std::function<void(InferenceEngine::InferRequest&)>;
// NB: The task is represented by:
// RunF - function which is set blobs and run async inference.
// CallbackF - function which is obtain output blobs and post it to output.
struct Task {
RunF run;
CallbackF callback;
};
explicit RequestPool(std::vector<InferenceEngine::InferRequest>&& requests);
void execute(Task&& t);
void waitAll();
private:
void callback(Task task, InferenceEngine::InferRequest& request, size_t id);
void setup();
QueueClass<size_t> m_idle_ids;
std::vector<InferenceEngine::InferRequest> m_requests;
};
// RequestPool implementation //////////////////////////////////////////////
cv::gimpl::ie::RequestPool::RequestPool(std::vector<InferenceEngine::InferRequest>&& requests)
: m_requests(std::move(requests)) {
setup();
}
void cv::gimpl::ie::RequestPool::setup() {
for (size_t i = 0; i < m_requests.size(); ++i) {
m_idle_ids.push(i);
}
}
void cv::gimpl::ie::RequestPool::execute(cv::gimpl::ie::RequestPool::Task&& t) {
size_t id = 0u;
m_idle_ids.pop(id);
auto& request = m_requests[id];
request.SetCompletionCallback(
std::bind(&cv::gimpl::ie::RequestPool::callback, this, t, std::ref(request), id));
t.run(request);
}
void cv::gimpl::ie::RequestPool::callback(cv::gimpl::ie::RequestPool::Task task,
InferenceEngine::InferRequest& request,
size_t id) {
task.callback(request);
// NB: IE::InferRequest keeps the callback until the new one is set.
// Since user's callback might keep resources that should be released,
// need to destroy its after execution.
// Let's set the empty one to cause the destruction of a callback.
request.SetCompletionCallback([](){});
m_idle_ids.push(id);
}
// NB: Not thread-safe.
void cv::gimpl::ie::RequestPool::waitAll() {
// NB: It will be blocked if at least one request is busy.
for (size_t i = 0; i < m_requests.size(); ++i) {
size_t id = 0u;
m_idle_ids.pop(id);
}
setup();
}
// GCPUExcecutable implementation //////////////////////////////////////////////
cv::gimpl::ie::GIEExecutable::GIEExecutable(const ade::Graph &g,
const std::vector<ade::NodeHandle> &nodes)
: m_g(g), m_gm(m_g) {
// FIXME: Currently this backend is capable to run a single inference node only.
// Need to extend our island fusion with merge/not-to-merge decision making parametrization
GConstGIEModel iem(g);
for (auto &nh : nodes) {
switch (m_gm.metadata(nh).get<NodeType>().t) {
case NodeType::OP:
if (this_nh == nullptr) {
this_nh = nh;
this_iec = iem.metadata(this_nh).get<IEUnit>().compile();
m_reqPool.reset(new RequestPool(this_iec.createInferRequests()));
}
else
util::throw_error(std::logic_error("Multi-node inference is not supported!"));
break;
case NodeType::DATA: {
m_dataNodes.push_back(nh);
const auto &desc = m_gm.metadata(nh).get<Data>();
if (desc.storage == Data::Storage::CONST_VAL) {
util::throw_error(std::logic_error("No const data please!"));
}
if (desc.storage == Data::Storage::INTERNAL) {
util::throw_error(std::logic_error("No internal data please!"));
}
break;
}
default: util::throw_error(std::logic_error("Unsupported NodeType type"));
}
}
}
void cv::gimpl::ie::GIEExecutable::run(cv::gimpl::GIslandExecutable::IInput &in,
cv::gimpl::GIslandExecutable::IOutput &out) {
// General alghoritm:
// 1. Collect island inputs/outputs.
// 2. Create kernel context. (Every kernel has his own context).
// 3. If the EndOfStream message is recieved, wait until all passed task are done.
// 4.
// 5.1 Run the kernel.
// 5.2 Kernel wait for all nececcary infer requests and start asynchronous execution.
// 5.3 After the kernel is finished continue processing next frame.
//
// 5. If graph is compiled in non-streaming mode, wait until all tasks are done.
std::vector<InObj> input_objs;
std::vector<OutObj> output_objs;
const auto &in_desc = in.desc();
const auto in_msg = in.get();
if (cv::util::holds_alternative<cv::gimpl::EndOfStream>(in_msg))
{
// (3) Wait until all passed task are done.
m_reqPool->waitAll();
out.post(cv::gimpl::EndOfStream{});
return;
}
GAPI_Assert(cv::util::holds_alternative<cv::GRunArgs>(in_msg));
const auto in_vector = cv::util::get<cv::GRunArgs>(in_msg);
// (1) Collect island inputs/outputs
input_objs.reserve(in_desc.size());
for (auto &&it: ade::util::zip(ade::util::toRange(in_desc),
ade::util::toRange(in_vector)))
{
input_objs.emplace_back(std::get<0>(it), std::get<1>(it));
}
const auto &out_desc = out.desc();
output_objs.reserve(out_desc.size());
for (auto &&it: ade::util::indexed(ade::util::toRange(out_desc)))
{
output_objs.emplace_back(ade::util::value(it),
out.get(ade::util::checked_cast<int>(ade::util::index(it))));
}
GConstGIEModel giem(m_g);
const auto &uu = giem.metadata(this_nh).get<IEUnit>();
const auto &op = m_gm.metadata(this_nh).get<Op>();
// (2) Create kernel context
auto ctx = std::make_shared<IECallContext>(uu, out, op.args, op.outs,
std::move(input_objs), std::move(output_objs));
const auto &kk = giem.metadata(this_nh).get<IECallable>();
// (4) Run the kernel.
kk.run(ctx, *m_reqPool);
// (5) In non-streaming mode need to wait until the all tasks are done
// FIXME: Is there more graceful way to handle this case ?
if (!m_gm.metadata().contains<Streaming>()) {
m_reqPool->waitAll();
}
}
namespace cv {
namespace gimpl {
namespace ie {
static void configureInputReshapeByImage(const IE::InputInfo::Ptr& ii,
const cv::GMetaArg mm,
IE::ICNNNetwork::InputShapes& input_reshape_table) {
const auto& layer_name = ii->name();
// Finding name in reshape table
const auto name_pos_in_table = input_reshape_table.find(layer_name);
// If contains then reshape for this layer already configured by shapes
// otherwise create a new element of reshape table with name and dimension
// which based on input image size.
if (name_pos_in_table != input_reshape_table.end()) {
GAPI_Assert(false &&
"Names of layers for reshape with specified dimensions shouldn't intersect with names for reshape by image");
}
cv::Size image_sz;
switch (mm.index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>():
{
const auto &meta = util::get<cv::GMatDesc>(mm);
image_sz = meta.size;
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>():
{
const auto &meta = util::get<cv::GFrameDesc>(mm);
image_sz = meta.size;
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
}
auto input_dims = ii->getTensorDesc().getDims();
const auto size = input_dims.size();
if (size <= 1) {
GAPI_Assert(false && "Unsupported number of dimensions for reshape by image");
}
input_dims.at(size - 2) = static_cast<size_t>(image_sz.height);
input_dims.at(size - 1) = static_cast<size_t>(image_sz.width);
// Adding new element to reshape table
input_reshape_table.emplace(layer_name, input_dims);
}
static void configureInputInfo(const IE::InputInfo::Ptr& ii, const cv::GMetaArg mm) {
switch (mm.index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>():
{
ii->setPrecision(toIE(util::get<cv::GMatDesc>(mm).depth));
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>():
{
const auto &meta = util::get<cv::GFrameDesc>(mm);
switch (meta.fmt) {
case cv::MediaFormat::NV12:
ii->getPreProcess().setColorFormat(IE::ColorFormat::NV12);
break;
case cv::MediaFormat::BGR:
// NB: Do nothing
break;
default:
GAPI_Assert(false && "Unsupported media format for IE backend");
}
ii->setPrecision(toIE(CV_8U));
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
}
}
// NB: This is a callback used by async infer
// to post outputs blobs (cv::GMat's).
static void PostOutputs(InferenceEngine::InferRequest &request,
std::shared_ptr<IECallContext> ctx) {
GAPI_ITT_STATIC_LOCAL_HANDLE(ie_cb_post_outputs_hndl, "IE_async_callback_PostOutputs");
GAPI_ITT_AUTO_TRACE_GUARD(ie_cb_post_outputs_hndl);
for (auto i : ade::util::iota(ctx->uu.params.num_out))
{
auto& out_mat = ctx->outMatR(i);
IE::Blob::Ptr this_blob = request.GetBlob(ctx->uu.params.output_names[i]);
copyFromIE(this_blob, out_mat);
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
}
class PostOutputsList {
public:
PostOutputsList(size_t size,
std::shared_ptr<IECallContext> ctx,
std::vector<std::vector<int>>&& cached_dims);
void operator()(InferenceEngine::InferRequest &request, size_t pos) const;
private:
struct Priv {
size_t size;
std::atomic<size_t> finished{0u};
std::shared_ptr<IECallContext> ctx;
std::vector<std::vector<int>> cached_dims;
};
std::shared_ptr<Priv> m_priv;
};
PostOutputsList::PostOutputsList(size_t size,
std::shared_ptr<IECallContext> ctx,
std::vector<std::vector<int>>&& cached_dims)
: m_priv(new Priv()) {
m_priv->size = size;
m_priv->ctx = ctx;
m_priv->cached_dims = std::move(cached_dims);
}
void PostOutputsList::operator()(InferenceEngine::InferRequest &req, size_t pos) const {
auto&& ctx = m_priv->ctx;
auto&& cached_dims = m_priv->cached_dims;
auto&& finished = m_priv->finished;
auto&& size = m_priv->size;
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
std::vector<cv::Mat> &out_vec = ctx->outVecR<cv::Mat>(i);
IE::Blob::Ptr out_blob = req.GetBlob(ctx->uu.params.output_names[i]);
GAPI_Assert(out_blob);
// FIXME: Avoid data copy. Not sure if it is possible though
out_vec[pos].create(cached_dims[i], toCV(out_blob->getTensorDesc().getPrecision()));
copyFromIE(out_blob, out_vec[pos]);
}
++finished;
if (finished == size) {
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
}
}
struct Infer: public cv::detail::KernelTag {
using API = cv::GInferBase;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
// Specify network's output layer metadata to the framework
// Also specify the input information to the IE from the framework
// NB: Have no clue if network's input [dimensions] may ever define
// its output dimensions. It seems possible with OpenCV DNN APIs
cv::GMetaArgs result;
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.params.input_names.size() == in_metas.size()
&& "Known input layers count doesn't match input meta count");
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
ade::util::toRange(in_metas))) {
const auto &input_name = std::get<0>(it);
auto &&ii = uu.inputs.at(input_name);
const auto & mm = std::get<1>(it);
configureInputInfo(ii, mm);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
}
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
}
// FIXME: It would be nice here to have an exact number of network's
// input/output parameters. Probably GCall should store it here for us.
// It doesn't, as far as I know..
for (const auto &out_name : uu.params.output_names) {
// NOTE: our output_names vector follows the API order
// of this operation's outputs
const IE::DataPtr& ie_out = uu.outputs.at(out_name);
const IE::SizeVector dims = ie_out->getTensorDesc().getDims();
cv::GMatDesc outm(toCV(ie_out->getPrecision()),
toCV(ie_out->getTensorDesc().getDims()));
result.emplace_back(outm);
}
return result;
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
using namespace std::placeholders;
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx](InferenceEngine::InferRequest &req) {
// non-generic version for now:
// - assumes all inputs/outputs are always Mats
for (auto i : ade::util::iota(ctx->uu.params.num_in)) {
// TODO: Ideally we shouldn't do SetBlob() but GetBlob() instead,
// and redirect our data producers to this memory
// (A memory dialog comes to the picture again)
IE::Blob::Ptr this_blob = extractBlob(*ctx, i);
setBlob(req,
ctx->uu.params.kind,
ctx->uu.params.input_names[i],
this_blob);
}
// FIXME: Should it be done by kernel ?
// What about to do that in RequestPool ?
req.StartAsync();
},
std::bind(PostOutputs, _1, ctx)
}
);
}
};
struct InferROI: public cv::detail::KernelTag {
using API = cv::GInferROIBase;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
cv::GMetaArgs result;
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// FIXME: So far it is pretty limited
GAPI_Assert(1u == uu.params.input_names.size());
GAPI_Assert(2u == in_metas.size());
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
// 0th is ROI, 1st is input image
const auto &input_name = uu.params.input_names.at(0);
auto &&ii = uu.inputs.at(input_name);
auto &&mm = in_metas.at(1u);
configureInputInfo(ii, mm);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
}
// FIXME: It would be nice here to have an exact number of network's
// input/output parameters. Probably GCall should store it here for us.
// It doesn't, as far as I know..
for (const auto &out_name : uu.params.output_names) {
// NOTE: our output_names vector follows the API order
// of this operation's outputs
const IE::DataPtr& ie_out = uu.outputs.at(out_name);
const IE::SizeVector dims = ie_out->getTensorDesc().getDims();
cv::GMatDesc outm(toCV(ie_out->getPrecision()),
toCV(ie_out->getTensorDesc().getDims()));
result.emplace_back(outm);
}
return result;
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
using namespace std::placeholders;
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx](InferenceEngine::InferRequest &req) {
GAPI_Assert(ctx->uu.params.num_in == 1);
auto&& this_roi = ctx->inArg<cv::detail::OpaqueRef>(0).rref<cv::Rect>();
IE::Blob::Ptr this_blob = extractBlob(*ctx, 1);
setBlob(req,
ctx->uu.params.kind,
*(ctx->uu.params.input_names.begin()),
IE::make_shared_blob(this_blob,
toIE(this_roi)));
// FIXME: Should it be done by kernel ?
// What about to do that in RequestPool ?
req.StartAsync();
},
std::bind(PostOutputs, _1, ctx)
}
);
}
};
struct InferList: public cv::detail::KernelTag {
using API = cv::GInferListBase;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
// Specify the input information to the IE from the framework
// NB: Have no clue if network's input [dimensions] may ever define
// its output dimensions. It seems possible with OpenCV DNN APIs
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
&& "Known input layers count doesn't match input meta count");
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
std::size_t idx = 1u;
for (auto &&input_name : uu.params.input_names) {
auto &&ii = uu.inputs.at(input_name);
const auto & mm = in_metas[idx++];
configureInputInfo(ii, mm);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
}
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
}
// roi-list version is much easier at the moment.
// All our outputs are vectors which don't have
// metadata at the moment - so just create a vector of
// "empty" array metadatas of the required size.
return cv::GMetaArgs(uu.params.output_names.size(),
cv::GMetaArg{cv::empty_array_desc()});
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
const auto& in_roi_vec = ctx->inArg<cv::detail::VectorRef>(0u).rref<cv::Rect>();
// NB: In case there is no input data need to post output anyway
if (in_roi_vec.empty()) {
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
return;
}
IE::Blob::Ptr this_blob = extractBlob(*ctx, 1);
std::vector<std::vector<int>> cached_dims(ctx->uu.params.num_out);
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
const IE::DataPtr& ie_out = ctx->uu.outputs.at(ctx->uu.params.output_names[i]);
cached_dims[i] = toCV(ie_out->getTensorDesc().getDims());
// FIXME: Isn't this should be done automatically
// by some resetInternalData(), etc? (Probably at the GExecutor level)
auto& out_vec = ctx->outVecR<cv::Mat>(i);
out_vec.clear();
out_vec.resize(in_roi_vec.size());
}
PostOutputsList callback(in_roi_vec.size(), ctx, std::move(cached_dims));
for (auto&& it : ade::util::indexed(in_roi_vec)) {
auto pos = ade::util::index(it);
const auto& rc = ade::util::value(it);
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx, rc, this_blob](InferenceEngine::InferRequest &req) {
IE::Blob::Ptr roi_blob = IE::make_shared_blob(this_blob, toIE(rc));
setBlob(req,
ctx->uu.params.kind,
ctx->uu.params.input_names[0u],
roi_blob);
req.StartAsync();
},
std::bind(callback, std::placeholders::_1, pos)
}
);
}
}
};
struct InferList2: public cv::detail::KernelTag {
using API = cv::GInferList2Base;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
// Specify the input information to the IE from the framework
// NB: Have no clue if network's input [dimensions] may ever define
// its output dimensions. It seems possible with OpenCV DNN APIs
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
&& "Known input layers count doesn't match input meta count");
const auto &op = gm.metadata(nh).get<Op>();
// In contrast to InferList, the InferList2 has only one
// "full-frame" image argument, and all the rest are arrays of
// ether ROI or blobs. So here we set the 0th arg image format
// to all inputs which are ROI-based (skipping the
// "blob"-based ones)
// FIXME: this is filtering not done, actually! GArrayDesc has
// no hint for its underlying type!
const auto &mm_0 = in_metas[0u];
switch (in_metas[0u].index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>(): {
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
GAPI_Assert( !meta_0.isND()
&& !meta_0.planar
&& "Only images are supported as the 0th argument");
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>(): {
// FIXME: Is there any validation for GFrame ?
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
}
if (util::holds_alternative<cv::GMatDesc>(mm_0)) {
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
GAPI_Assert( !meta_0.isND()
&& !meta_0.planar
&& "Only images are supported as the 0th argument");
}
std::size_t idx = 1u;
for (auto &&input_name : uu.params.input_names) {
auto &ii = uu.inputs.at(input_name);
const auto &mm = in_metas[idx];
GAPI_Assert(util::holds_alternative<cv::GArrayDesc>(mm)
&& "Non-array inputs are not supported");
if (op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_RECT) {
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
// This is a cv::Rect -- configure the IE preprocessing
configureInputInfo(ii, mm_0);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm_0, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
}
} else {
// This is a cv::GMat (equals to: cv::Mat)
// Just validate that it is really the type
// (other types are prohibited here)
GAPI_Assert(op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_MAT);
}
idx++; // NB: Never forget to increment the counter
}
// roi-list version is much easier at the moment.
// All our outputs are vectors which don't have
// metadata at the moment - so just create a vector of
// "empty" array metadatas of the required size.
return cv::GMetaArgs(uu.params.output_names.size(),
cv::GMetaArg{cv::empty_array_desc()});
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
GAPI_Assert(ctx->inArgs().size() > 1u
&& "This operation must have at least two arguments");
IE::Blob::Ptr blob_0 = extractBlob(*ctx, 0);
const auto list_size = ctx->inArg<cv::detail::VectorRef>(1u).size();
if (list_size == 0u) {
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
return;
}
// FIXME: This could be done ONCE at graph compile stage!
std::vector< std::vector<int> > cached_dims(ctx->uu.params.num_out);
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
const IE::DataPtr& ie_out = ctx->uu.outputs.at(ctx->uu.params.output_names[i]);
cached_dims[i] = toCV(ie_out->getTensorDesc().getDims());
// FIXME: Isn't this should be done automatically
// by some resetInternalData(), etc? (Probably at the GExecutor level)
auto& out_vec = ctx->outVecR<cv::Mat>(i);
out_vec.clear();
out_vec.resize(list_size);
}
PostOutputsList callback(list_size, ctx, std::move(cached_dims));
for (const auto &list_idx : ade::util::iota(list_size)) {
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx, list_idx, list_size, blob_0](InferenceEngine::InferRequest &req) {
for (auto in_idx : ade::util::iota(ctx->uu.params.num_in)) {
const auto &this_vec = ctx->inArg<cv::detail::VectorRef>(in_idx+1u);
GAPI_Assert(this_vec.size() == list_size);
IE::Blob::Ptr this_blob;
if (this_vec.getKind() == cv::detail::OpaqueKind::CV_RECT) {
const auto &vec = this_vec.rref<cv::Rect>();
this_blob = IE::make_shared_blob(blob_0, toIE(vec[list_idx]));
} else if (this_vec.getKind() == cv::detail::OpaqueKind::CV_MAT) {
const auto &vec = this_vec.rref<cv::Mat>();
const auto &mat = vec[list_idx];
this_blob = wrapIE(mat, cv::gapi::ie::TraitAs::TENSOR);
} else {
GAPI_Assert(false &&
"Only Rect and Mat types are supported for infer list 2!");
}
setBlob(req,
ctx->uu.params.kind,
ctx->uu.params.input_names[in_idx],
this_blob);
}
req.StartAsync();
},
std::bind(callback, std::placeholders::_1, list_idx)
} // task
);
} // for
}
};
} // namespace ie
} // namespace gapi
} // namespace cv
// IE backend implementation of GBackend::Priv ///////////////////////
namespace {
class GIEBackendImpl final: public cv::gapi::GBackend::Priv {
virtual void unpackKernel(ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GKernelImpl &ii) override {
using namespace cv::gimpl;
// FIXME: Introduce a DNNBackend interface which'd specify
// the framework for this???
GIEModel gm(gr);
auto &np = gm.metadata(nh).get<NetworkParams>();
auto &pp = cv::util::any_cast<cv::gapi::ie::detail::ParamDesc>(np.opaque);
const auto &ki = cv::util::any_cast<KImpl>(ii.opaque);
GModel::Graph model(gr);
auto& op = model.metadata(nh).get<Op>();
// NB: In case generic infer, info about in/out names is stored in operation (op.params)
if (pp.is_generic)
{
auto& info = cv::util::any_cast<cv::detail::InOutInfo>(op.params);
pp.input_names = info.in_names;
pp.output_names = info.out_names;
pp.num_in = info.in_names.size();
pp.num_out = info.out_names.size();
}
gm.metadata(nh).set(IEUnit{pp});
gm.metadata(nh).set(IECallable{ki.run});
gm.metadata(nh).set(CustomMetaFunction{ki.customMetaFunc});
}
virtual EPtr compile(const ade::Graph &graph,
const cv::GCompileArgs &,
const std::vector<ade::NodeHandle> &nodes) const override {
return EPtr{new cv::gimpl::ie::GIEExecutable(graph, nodes)};
}
virtual cv::gapi::GKernelPackage auxiliaryKernels() const override {
return cv::gapi::kernels< cv::gimpl::ie::Infer
, cv::gimpl::ie::InferROI
, cv::gimpl::ie::InferList
, cv::gimpl::ie::InferList2
>();
}
virtual bool controlsMerge() const override {
return true;
}
virtual bool allowsMerge(const cv::gimpl::GIslandModel::Graph &,
const ade::NodeHandle &,
const ade::NodeHandle &,
const ade::NodeHandle &) const override {
return false;
}
};
}
cv::gapi::GBackend cv::gapi::ie::backend() {
static cv::gapi::GBackend this_backend(std::make_shared<GIEBackendImpl>());
return this_backend;
}
cv::Mat cv::gapi::ie::util::to_ocv(IE::Blob::Ptr blob) {
const auto& tdesc = blob->getTensorDesc();
return cv::Mat(toCV(tdesc.getDims()),
toCV(tdesc.getPrecision()),
blob->buffer().as<uint8_t*>());
}
std::vector<int> cv::gapi::ie::util::to_ocv(const IE::SizeVector &dims) {
return toCV(dims);
}
IE::Blob::Ptr cv::gapi::ie::util::to_ie(cv::Mat &blob) {
return wrapIE(blob, cv::gapi::ie::TraitAs::IMAGE);
}
IE::Blob::Ptr cv::gapi::ie::util::to_ie(cv::Mat &y_plane, cv::Mat &uv_plane) {
auto y_blob = wrapIE(y_plane, cv::gapi::ie::TraitAs::IMAGE);
auto uv_blob = wrapIE(uv_plane, cv::gapi::ie::TraitAs::IMAGE);
#if INF_ENGINE_RELEASE >= 2021010000
return IE::make_shared_blob<IE::NV12Blob>(y_blob, uv_blob);
#else
return IE::make_shared_blob<InferenceEngine::NV12Blob>(y_blob, uv_blob);
#endif
}
#else // HAVE_INF_ENGINE
cv::gapi::GBackend cv::gapi::ie::backend() {
// Still provide this symbol to avoid linking issues
util::throw_error(std::runtime_error("G-API has been compiled without OpenVINO IE support"));
}
#endif // HAVE_INF_ENGINE