gislandmodel.cpp
15.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#include "precomp.hpp"
#include <sstream>
#include <unordered_set>
#include <unordered_map>
#include <typeinfo> // typeid
#include <cctype> // std::isdigit
#include <ade/util/checked_cast.hpp>
#include <ade/util/zip_range.hpp> // zip_range, indexed
#include "api/gbackend_priv.hpp" // GBackend::Priv().compile()
#include "compiler/gmodel.hpp"
#include "compiler/gislandmodel.hpp"
#include "compiler/gmodel.hpp"
#include "logger.hpp" // GAPI_LOG
namespace cv { namespace gimpl {
GIsland::GIsland(const gapi::GBackend &bknd,
ade::NodeHandle op,
util::optional<std::string> &&user_tag)
: m_backend(bknd)
, m_user_tag(std::move(user_tag))
{
m_all.insert(op);
m_in_ops.insert(op);
m_out_ops.insert(op);
}
// _ because of gcc4.8 wanings on ARM
GIsland::GIsland(const gapi::GBackend &_bknd,
node_set &&_all,
node_set &&_in_ops,
node_set &&_out_ops,
util::optional<std::string> &&_user_tag)
: m_backend(_bknd)
, m_all(std::move(_all))
, m_in_ops(std::move(_in_ops))
, m_out_ops(std::move(_out_ops))
, m_user_tag(std::move(_user_tag))
{
}
const GIsland::node_set& GIsland::contents() const
{
return m_all;
}
const GIsland::node_set& GIsland::in_ops() const
{
return m_in_ops;
}
const GIsland::node_set& GIsland::out_ops() const
{
return m_out_ops;
}
gapi::GBackend GIsland::backend() const
{
return m_backend;
}
bool GIsland::is_user_specified() const
{
return m_user_tag.has_value();
}
void GIsland::debug() const
{
std::stringstream stream;
stream << name() << " {{\n input ops: ";
for (const auto& nh : m_in_ops) stream << nh << "; ";
stream << "\n output ops: ";
for (const auto& nh : m_out_ops) stream << nh << "; ";
stream << "\n contents: ";
for (const auto& nh : m_all) stream << nh << "; ";
stream << "\n}}" << std::endl;
GAPI_LOG_INFO(NULL, stream.str());
}
GIsland::node_set GIsland::consumers(const ade::Graph &g,
const ade::NodeHandle &slot_nh) const
{
GIslandModel::ConstGraph gim(g);
auto data_nh = gim.metadata(slot_nh).get<DataSlot>().original_data_node;
GIsland::node_set result;
for (const auto& in_op : m_in_ops)
{
auto it = std::find(in_op->inNodes().begin(),
in_op->inNodes().end(),
data_nh);
if (it != in_op->inNodes().end())
result.insert(in_op);
}
return result;
}
ade::NodeHandle GIsland::producer(const ade::Graph &g,
const ade::NodeHandle &slot_nh) const
{
GIslandModel::ConstGraph gim(g);
auto data_nh = gim.metadata(slot_nh).get<DataSlot>().original_data_node;
for (const auto& out_op : m_out_ops)
{
auto it = std::find(out_op->outNodes().begin(),
out_op->outNodes().end(),
data_nh);
if (it != out_op->outNodes().end())
return out_op;
}
// Consistency: A GIsland requested for producer() of slot_nh should
// always had the appropriate GModel node handle in its m_out_ops vector.
GAPI_Assert(false && "Broken GIslandModel ?.");
}
std::string GIsland::name() const
{
if (is_user_specified())
return m_user_tag.value();
std::stringstream ss;
ss << "island_#" << std::hex << static_cast<const void*>(this);
return ss.str();
}
void GIslandModel::generateInitial(GIslandModel::Graph &g,
const ade::Graph &src_graph)
{
const GModel::ConstGraph src_g(src_graph);
// Initially GIslandModel is a 1:1 projection from GModel:
// 1) Every GModel::OP becomes a separate GIslandModel::FusedIsland;
// 2) Every GModel::DATA becomes GIslandModel::DataSlot;
// 3) Single-operation FusedIslands are connected with DataSlots in the
// same way as OPs and DATA (edges with the same metadata)
using node_set = std::unordered_set
< ade::NodeHandle
, ade::HandleHasher<ade::Node>
>;
using node_map = std::unordered_map
< ade::NodeHandle
, ade::NodeHandle
, ade::HandleHasher<ade::Node>
>;
node_set all_operations;
node_map data_to_slot;
// First, list all operations and build create DataSlots in <g>
for (auto src_nh : src_g.nodes())
{
switch (src_g.metadata(src_nh).get<NodeType>().t)
{
case NodeType::OP: all_operations.insert(src_nh); break;
case NodeType::DATA: data_to_slot[src_nh] = mkSlotNode(g, src_nh); break;
default: GAPI_Assert(false); break;
}
} // for (src_g.nodes)
// Now put single-op islands and connect it with DataSlots
for (auto src_op_nh : all_operations)
{
auto nh = mkIslandNode(g, src_g.metadata(src_op_nh).get<Op>().backend, src_op_nh, src_graph);
for (auto in_edge : src_op_nh->inEdges())
{
auto src_data_nh = in_edge->srcNode();
auto isl_slot_nh = data_to_slot.at(src_data_nh);
auto isl_new_eh = g.link(isl_slot_nh, nh); // no other data stored yet
// Propagate some special metadata from the GModel to GIslandModel
// TODO: Make it a single place (a function) for both inputs/outputs?
// (since it is duplicated in the below code block)
if (src_g.metadata(in_edge).contains<DesyncEdge>())
{
const auto idx = src_g.metadata(in_edge).get<DesyncEdge>().index;
g.metadata(isl_new_eh).set(DesyncIslEdge{idx});
}
}
for (auto out_edge : src_op_nh->outEdges())
{
auto dst_data_nh = out_edge->dstNode();
auto isl_slot_nh = data_to_slot.at(dst_data_nh);
auto isl_new_eh = g.link(nh, isl_slot_nh);
if (src_g.metadata(out_edge).contains<DesyncEdge>())
{
const auto idx = src_g.metadata(out_edge).get<DesyncEdge>().index;
g.metadata(isl_new_eh).set(DesyncIslEdge{idx});
}
}
} // for(all_operations)
}
ade::NodeHandle GIslandModel::mkSlotNode(Graph &g, const ade::NodeHandle &data_nh)
{
auto nh = g.createNode();
g.metadata(nh).set(DataSlot{data_nh});
g.metadata(nh).set(NodeKind{NodeKind::SLOT});
return nh;
}
ade::NodeHandle GIslandModel::mkIslandNode(Graph &g, const gapi::GBackend& bknd, const ade::NodeHandle &op_nh, const ade::Graph &orig_g)
{
const GModel::ConstGraph src_g(orig_g);
util::optional<std::string> user_tag;
if (src_g.metadata(op_nh).contains<Island>())
{
user_tag = util::make_optional(src_g.metadata(op_nh).get<Island>().island);
}
auto nh = g.createNode();
std::shared_ptr<GIsland> island(new GIsland(bknd, op_nh, std::move(user_tag)));
g.metadata(nh).set(FusedIsland{std::move(island)});
g.metadata(nh).set(NodeKind{NodeKind::ISLAND});
return nh;
}
ade::NodeHandle GIslandModel::mkIslandNode(Graph &g, std::shared_ptr<GIsland>&& isl)
{
ade::NodeHandle nh = g.createNode();
g.metadata(nh).set(cv::gimpl::NodeKind{cv::gimpl::NodeKind::ISLAND});
g.metadata(nh).set<cv::gimpl::FusedIsland>({std::move(isl)});
return nh;
}
ade::NodeHandle GIslandModel::mkEmitNode(Graph &g, std::size_t in_idx)
{
ade::NodeHandle nh = g.createNode();
g.metadata(nh).set(cv::gimpl::NodeKind{cv::gimpl::NodeKind::EMIT});
g.metadata(nh).set(cv::gimpl::Emitter{in_idx, {}});
return nh;
}
ade::NodeHandle GIslandModel::mkSinkNode(Graph &g, std::size_t out_idx)
{
ade::NodeHandle nh = g.createNode();
g.metadata(nh).set(cv::gimpl::NodeKind{cv::gimpl::NodeKind::SINK});
g.metadata(nh).set(cv::gimpl::Sink{out_idx});
return nh;
}
void GIslandModel::syncIslandTags(Graph &g, ade::Graph &orig_g)
{
GModel::Graph gm(orig_g);
for (auto nh : g.nodes())
{
if (NodeKind::ISLAND == g.metadata(nh).get<NodeKind>().k)
{
auto island = g.metadata(nh).get<FusedIsland>().object;
auto isl_tag = island->name();
for (const auto& orig_nh_inside : island->contents())
{
gm.metadata(orig_nh_inside).set(Island{isl_tag});
}
}
}
}
void GIslandModel::compileIslands(Graph &g, const ade::Graph &orig_g, const GCompileArgs &args)
{
GModel::ConstGraph gm(orig_g);
if (gm.metadata().contains<HasIntrinsics>()) {
util::throw_error(std::logic_error("FATAL: The graph has unresolved intrinsics"));
}
auto original_sorted = gm.metadata().get<ade::passes::TopologicalSortData>();
for (auto nh : g.nodes())
{
if (NodeKind::ISLAND == g.metadata(nh).get<NodeKind>().k)
{
auto nodes_to_data = [&](const ade::NodeHandle& dnh)
{
GAPI_Assert(g.metadata(dnh).get<NodeKind>().k == NodeKind::SLOT);
const auto& orig_data_nh = g.metadata(dnh).get<DataSlot>().original_data_node;
const auto& data = gm.metadata(orig_data_nh).get<Data>();
return data;
};
std::vector<cv::gimpl::Data> ins_data;
ade::util::transform(nh->inNodes(), std::back_inserter(ins_data), nodes_to_data);
std::vector<cv::gimpl::Data> outs_data;
ade::util::transform(nh->outNodes(), std::back_inserter(outs_data), nodes_to_data);
auto island_obj = g.metadata(nh).get<FusedIsland>().object;
auto island_ops = island_obj->contents();
std::vector<ade::NodeHandle> topo_sorted_list;
ade::util::copy_if(original_sorted.nodes(),
std::back_inserter(topo_sorted_list),
[&](ade::NodeHandle sorted_nh) {
return ade::util::contains(island_ops, sorted_nh);
});
auto island_exe = island_obj->backend().priv()
.compile(orig_g, args, topo_sorted_list, ins_data, outs_data);
GAPI_Assert(nullptr != island_exe);
g.metadata(nh).set(IslandExec{std::move(island_exe)});
}
}
g.metadata().set(IslandsCompiled{});
}
ade::NodeHandle GIslandModel::producerOf(const ConstGraph &g, ade::NodeHandle &data_nh)
{
for (auto nh : g.nodes())
{
// find a data slot...
if (NodeKind::SLOT == g.metadata(nh).get<NodeKind>().k)
{
// which is associated with the given data object...
if (data_nh == g.metadata(nh).get<DataSlot>().original_data_node)
{
// which probably has a produrer...
if (0u != nh->inNodes().size())
{
// ...then the answer is that producer
return nh->inNodes().front();
}
else return ade::NodeHandle(); // input data object?
// return empty to break the cycle
}
}
}
// No appropriate data slot found - probably, the object has been
// optimized out during fusion
return ade::NodeHandle();
}
std::string GIslandModel::traceIslandName(const ade::NodeHandle& island_nh, const Graph& g) {
auto island_ptr = g.metadata(island_nh).get<FusedIsland>().object;
std::string island_name = island_ptr->name();
std::string backend_name = "";
auto& backend_impl = island_ptr->backend().priv();
std::string backend_impl_type_name = typeid(backend_impl).name();
// NOTE: Major part of already existing backends implementaion classes are called using
// "*G[Name]BackendImpl*" pattern.
// We are trying to match against this pattern and retrive just [Name] part.
// If matching isn't successful, full mangled class name will be used.
//
// To match we use following algorithm:
// 1) Find "BackendImpl" substring, if it doesn't exist, go to step 5.
// 2) Let from_pos be second character in a string.
// 3) Starting from from_pos, seek for "G" symbol in a string.
// If it doesn't exist or exists after "BackendImpl" position, go to step 5.
// 4) Check that previous character before found "G" is digit, means that this is
// part of characters number in a new word in a string (previous words may be
// namespaces).
// If it is so, match is found. Return name between found "G" and "BackendImpl".
// If it isn't so, assign from_pos to found "G" position + 1 and loop to step 3.
// 5) Matching is not successful, return full class name.
bool matched = false;
bool stop = false;
auto to_pos = backend_impl_type_name.find("BackendImpl");
std::size_t from_pos = 0UL;
if (to_pos != std::string::npos) {
while (!matched && !stop) {
from_pos = backend_impl_type_name.find("G", from_pos + 1);
stop = from_pos == std::string::npos || from_pos >= to_pos;
matched = !stop && std::isdigit(backend_impl_type_name[from_pos - 1]);
}
}
if (matched) {
backend_name = backend_impl_type_name.substr(from_pos + 1, to_pos - from_pos - 1);
}
else {
backend_name = backend_impl_type_name;
}
return island_name + "_" + backend_name;
}
void GIslandExecutable::run(GIslandExecutable::IInput &in, GIslandExecutable::IOutput &out)
{
// Default implementation: just reuse the existing old-fashioned run
// Build a single synchronous execution frame for it.
std::vector<InObj> in_objs;
std::vector<OutObj> out_objs;
const auto &in_desc = in.desc();
const auto &out_desc = out.desc();
const auto in_msg = in.get();
if (cv::util::holds_alternative<cv::gimpl::EndOfStream>(in_msg))
{
out.post(cv::gimpl::EndOfStream{});
return;
}
GAPI_Assert(cv::util::holds_alternative<cv::GRunArgs>(in_msg));
const auto in_vector = cv::util::get<cv::GRunArgs>(in_msg);
in_objs.reserve(in_desc.size());
out_objs.reserve(out_desc.size());
for (auto &&it: ade::util::zip(ade::util::toRange(in_desc),
ade::util::toRange(in_vector)))
{
in_objs.emplace_back(std::get<0>(it), std::get<1>(it));
}
for (auto &&it: ade::util::indexed(ade::util::toRange(out_desc)))
{
out_objs.emplace_back(ade::util::value(it),
out.get(ade::util::checked_cast<int>(ade::util::index(it))));
}
run(std::move(in_objs), std::move(out_objs));
// Propagate in-graph meta down to the graph
// Note: this is not a complete implementation! Mainly this is a stub
// and the proper implementation should come later.
//
// Propagating the meta information here has its pros and cons.
// Pros: it works here uniformly for both regular and streaming cases,
// also for the majority of old-fashioned (synchronous) backends
// Cons: backends implementing the asynchronous run(IInput,IOutput)
// won't get it out of the box
cv::GRunArg::Meta stub_meta;
for (auto &&in_arg : in_vector)
{
stub_meta.insert(in_arg.meta.begin(), in_arg.meta.end());
}
// Report output objects as "ready" to the executor, also post
// calculated in-graph meta for the objects
for (auto &&it: out_objs)
{
out.meta(it.second, stub_meta);
out.post(std::move(it.second));
}
}
} // namespace cv
} // namespace gimpl