matchers.cpp 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#include "opencv2/core/opencl/ocl_defs.hpp"

using namespace cv;
using namespace cv::detail;
using namespace cv::cuda;

#ifdef HAVE_OPENCV_CUDAIMGPROC
#  include "opencv2/cudaimgproc.hpp"
#endif

namespace {

struct DistIdxPair
{
    bool operator<(const DistIdxPair &other) const { return dist < other.dist; }
    double dist;
    int idx;
};


struct MatchPairsBody : ParallelLoopBody
{
    MatchPairsBody(FeaturesMatcher &_matcher, const std::vector<ImageFeatures> &_features,
                   std::vector<MatchesInfo> &_pairwise_matches, std::vector<std::pair<int,int> > &_near_pairs)
            : matcher(_matcher), features(_features),
              pairwise_matches(_pairwise_matches), near_pairs(_near_pairs) {}

    void operator ()(const Range &r) const CV_OVERRIDE
    {
        cv::RNG rng = cv::theRNG(); // save entry rng state
        const int num_images = static_cast<int>(features.size());
        for (int i = r.start; i < r.end; ++i)
        {
            cv::theRNG() = cv::RNG(rng.state + i); // force "stable" RNG seed for each processed pair

            int from = near_pairs[i].first;
            int to = near_pairs[i].second;
            int pair_idx = from*num_images + to;

            matcher(features[from], features[to], pairwise_matches[pair_idx]);
            pairwise_matches[pair_idx].src_img_idx = from;
            pairwise_matches[pair_idx].dst_img_idx = to;

            size_t dual_pair_idx = to*num_images + from;

            pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx];
            pairwise_matches[dual_pair_idx].src_img_idx = to;
            pairwise_matches[dual_pair_idx].dst_img_idx = from;

            if (!pairwise_matches[pair_idx].H.empty())
                pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv();

            for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j)
                std::swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx,
                          pairwise_matches[dual_pair_idx].matches[j].trainIdx);
            LOG(".");
        }
    }

    FeaturesMatcher &matcher;
    const std::vector<ImageFeatures> &features;
    std::vector<MatchesInfo> &pairwise_matches;
    std::vector<std::pair<int,int> > &near_pairs;

private:
    void operator =(const MatchPairsBody&);
};


//////////////////////////////////////////////////////////////////////////////

typedef std::set<std::pair<int,int> > MatchesSet;

// These two classes are aimed to find features matches only, not to
// estimate homography

class CpuMatcher CV_FINAL : public FeaturesMatcher
{
public:
    CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {}
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) CV_OVERRIDE;

private:
    float match_conf_;
};

#ifdef HAVE_OPENCV_CUDAFEATURES2D
class GpuMatcher CV_FINAL : public FeaturesMatcher
{
public:
    GpuMatcher(float match_conf) : match_conf_(match_conf) {}
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);

    void collectGarbage();

private:
    float match_conf_;
    GpuMat descriptors1_, descriptors2_;
    GpuMat train_idx_, distance_, all_dist_;
    std::vector< std::vector<DMatch> > pair_matches;
};
#endif


void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
    CV_INSTRUMENT_REGION();

    CV_Assert(features1.descriptors.type() == features2.descriptors.type());
    CV_Assert(features2.descriptors.depth() == CV_8U || features2.descriptors.depth() == CV_32F);

    matches_info.matches.clear();

    Ptr<cv::DescriptorMatcher> matcher;
#if 0 // TODO check this
    if (ocl::isOpenCLActivated())
    {
        matcher = makePtr<BFMatcher>((int)NORM_L2);
    }
    else
#endif
    {
        Ptr<flann::IndexParams> indexParams = makePtr<flann::KDTreeIndexParams>();
        Ptr<flann::SearchParams> searchParams = makePtr<flann::SearchParams>();

        if (features2.descriptors.depth() == CV_8U)
        {
            indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
            searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
        }

        matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams);
    }
    std::vector< std::vector<DMatch> > pair_matches;
    MatchesSet matches;

    // Find 1->2 matches
    matcher->knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
    for (size_t i = 0; i < pair_matches.size(); ++i)
    {
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
        {
            matches_info.matches.push_back(m0);
            matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx));
        }
    }
    LOG("\n1->2 matches: " << matches_info.matches.size() << endl);

    // Find 2->1 matches
    pair_matches.clear();
    matcher->knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
    for (size_t i = 0; i < pair_matches.size(); ++i)
    {
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
            if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
                matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
    }
    LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);
}

#ifdef HAVE_OPENCV_CUDAFEATURES2D
void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
    CV_INSTRUMENT_REGION();

    matches_info.matches.clear();

    ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_);
    ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_);

    descriptors1_.upload(features1.descriptors);
    descriptors2_.upload(features2.descriptors);

    //TODO: NORM_L1 allows to avoid matcher crashes for ORB features, but is not absolutely correct for them.
    //      The best choice for ORB features is NORM_HAMMING, but it is incorrect for SURF features.
    //      More accurate fix in this place should be done in the future -- the type of the norm
    //      should be either a parameter of this method, or a field of the class.
    Ptr<cuda::DescriptorMatcher> matcher = cuda::DescriptorMatcher::createBFMatcher(NORM_L1);

    MatchesSet matches;

    // Find 1->2 matches
    pair_matches.clear();
    matcher->knnMatch(descriptors1_, descriptors2_, pair_matches, 2);
    for (size_t i = 0; i < pair_matches.size(); ++i)
    {
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
        {
            matches_info.matches.push_back(m0);
            matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx));
        }
    }

    // Find 2->1 matches
    pair_matches.clear();
    matcher->knnMatch(descriptors2_, descriptors1_, pair_matches, 2);
    for (size_t i = 0; i < pair_matches.size(); ++i)
    {
        if (pair_matches[i].size() < 2)
            continue;
        const DMatch& m0 = pair_matches[i][0];
        const DMatch& m1 = pair_matches[i][1];
        if (m0.distance < (1.f - match_conf_) * m1.distance)
            if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
                matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
    }
}

void GpuMatcher::collectGarbage()
{
    descriptors1_.release();
    descriptors2_.release();
    train_idx_.release();
    distance_.release();
    all_dist_.release();
    std::vector< std::vector<DMatch> >().swap(pair_matches);
}
#endif

} // namespace


namespace cv {
namespace detail {

void computeImageFeatures(
    const Ptr<Feature2D> &featuresFinder,
    InputArrayOfArrays  images,
    std::vector<ImageFeatures> &features,
    InputArrayOfArrays masks)
{
    // compute all features
    std::vector<std::vector<KeyPoint>> keypoints;
    std::vector<UMat> descriptors;
    // TODO replace with 1 call to new over load of detectAndCompute
    featuresFinder->detect(images, keypoints, masks);
    featuresFinder->compute(images, keypoints, descriptors);

    // store to ImageFeatures
    size_t count = images.total();
    features.resize(count);
    CV_Assert(count == keypoints.size() && count == descriptors.size());
    for (size_t i = 0; i < count; ++i)
    {
        features[i].img_size = images.size(int(i));
        features[i].keypoints = std::move(keypoints[i]);
        features[i].descriptors = std::move(descriptors[i]);
    }
}

void computeImageFeatures(
    const Ptr<Feature2D> &featuresFinder,
    InputArray image,
    ImageFeatures &features,
    InputArray mask)
{
    features.img_size = image.size();
    featuresFinder->detectAndCompute(image, mask, features.keypoints, features.descriptors);
}

//////////////////////////////////////////////////////////////////////////////

MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}

MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }

MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
{
    src_img_idx = other.src_img_idx;
    dst_img_idx = other.dst_img_idx;
    matches = other.matches;
    inliers_mask = other.inliers_mask;
    num_inliers = other.num_inliers;
    H = other.H.clone();
    confidence = other.confidence;
    return *this;
}


//////////////////////////////////////////////////////////////////////////////

void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
                                  const UMat &mask)
{
    const int num_images = static_cast<int>(features.size());

    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows));
    Mat_<uchar> mask_(mask.getMat(ACCESS_READ));
    if (mask_.empty())
        mask_ = Mat::ones(num_images, num_images, CV_8U);

    std::vector<std::pair<int,int> > near_pairs;
    for (int i = 0; i < num_images - 1; ++i)
        for (int j = i + 1; j < num_images; ++j)
            if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j))
                near_pairs.push_back(std::make_pair(i, j));

    pairwise_matches.clear(); // clear history values
    pairwise_matches.resize(num_images * num_images);
    MatchPairsBody body(*this, features, pairwise_matches, near_pairs);

    if (is_thread_safe_)
        parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body);
    else
        body(Range(0, static_cast<int>(near_pairs.size())));
    LOGLN_CHAT("");
}


//////////////////////////////////////////////////////////////////////////////

BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
{
    CV_UNUSED(try_use_gpu);

#ifdef HAVE_OPENCV_CUDAFEATURES2D
    if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
    {
        impl_ = makePtr<GpuMatcher>(match_conf);
    }
    else
#endif
    {
        impl_ = makePtr<CpuMatcher>(match_conf);
    }

    is_thread_safe_ = impl_->isThreadSafe();
    num_matches_thresh1_ = num_matches_thresh1;
    num_matches_thresh2_ = num_matches_thresh2;
}

Ptr<BestOf2NearestMatcher> BestOf2NearestMatcher::create(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
{
    return makePtr<BestOf2NearestMatcher>(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh2);
}



void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2,
                                  MatchesInfo &matches_info)
{
    CV_INSTRUMENT_REGION();

    (*impl_)(features1, features2, matches_info);

    // Check if it makes sense to find homography
    if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
        return;

    // Construct point-point correspondences for homography estimation
    Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
    Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
    for (size_t i = 0; i < matches_info.matches.size(); ++i)
    {
        const DMatch& m = matches_info.matches[i];

        Point2f p = features1.keypoints[m.queryIdx].pt;
        p.x -= features1.img_size.width * 0.5f;
        p.y -= features1.img_size.height * 0.5f;
        src_points.at<Point2f>(0, static_cast<int>(i)) = p;

        p = features2.keypoints[m.trainIdx].pt;
        p.x -= features2.img_size.width * 0.5f;
        p.y -= features2.img_size.height * 0.5f;
        dst_points.at<Point2f>(0, static_cast<int>(i)) = p;
    }

    // Find pair-wise motion
    matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, RANSAC);
    if (matches_info.H.empty() || std::abs(determinant(matches_info.H)) < std::numeric_limits<double>::epsilon())
        return;

    // Find number of inliers
    matches_info.num_inliers = 0;
    for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
        if (matches_info.inliers_mask[i])
            matches_info.num_inliers++;

    // These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic Image Stitching
    // using Invariant Features"
    matches_info.confidence = matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size());

    // Set zero confidence to remove matches between too close images, as they don't provide
    // additional information anyway. The threshold was set experimentally.
    matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence;

    // Check if we should try to refine motion
    if (matches_info.num_inliers < num_matches_thresh2_)
        return;

    // Construct point-point correspondences for inliers only
    src_points.create(1, matches_info.num_inliers, CV_32FC2);
    dst_points.create(1, matches_info.num_inliers, CV_32FC2);
    int inlier_idx = 0;
    for (size_t i = 0; i < matches_info.matches.size(); ++i)
    {
        if (!matches_info.inliers_mask[i])
            continue;

        const DMatch& m = matches_info.matches[i];

        Point2f p = features1.keypoints[m.queryIdx].pt;
        p.x -= features1.img_size.width * 0.5f;
        p.y -= features1.img_size.height * 0.5f;
        src_points.at<Point2f>(0, inlier_idx) = p;

        p = features2.keypoints[m.trainIdx].pt;
        p.x -= features2.img_size.width * 0.5f;
        p.y -= features2.img_size.height * 0.5f;
        dst_points.at<Point2f>(0, inlier_idx) = p;

        inlier_idx++;
    }

    // Rerun motion estimation on inliers only
    matches_info.H = findHomography(src_points, dst_points, RANSAC);
}

void BestOf2NearestMatcher::collectGarbage()
{
    impl_->collectGarbage();
}


BestOf2NearestRangeMatcher::BestOf2NearestRangeMatcher(int range_width, bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2): BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh2)
{
    range_width_ = range_width;
}


void BestOf2NearestRangeMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
                                  const UMat &mask)
{
    const int num_images = static_cast<int>(features.size());

    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows));
    Mat_<uchar> mask_(mask.getMat(ACCESS_READ));
    if (mask_.empty())
        mask_ = Mat::ones(num_images, num_images, CV_8U);

    std::vector<std::pair<int,int> > near_pairs;
    for (int i = 0; i < num_images - 1; ++i)
        for (int j = i + 1; j < std::min(num_images, i + 1 + range_width_); ++j)
            if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j))
                near_pairs.push_back(std::make_pair(i, j));

    pairwise_matches.resize(num_images * num_images);
    MatchPairsBody body(*this, features, pairwise_matches, near_pairs);

    if (is_thread_safe_)
        parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body);
    else
        body(Range(0, static_cast<int>(near_pairs.size())));
    LOGLN_CHAT("");
}


void AffineBestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2,
                                        MatchesInfo &matches_info)
{
    (*impl_)(features1, features2, matches_info);

    // Check if it makes sense to find transform
    if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
        return;

    // Construct point-point correspondences for transform estimation
    Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
    Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
    for (size_t i = 0; i < matches_info.matches.size(); ++i)
    {
        const cv::DMatch &m = matches_info.matches[i];
        src_points.at<Point2f>(0, static_cast<int>(i)) = features1.keypoints[m.queryIdx].pt;
        dst_points.at<Point2f>(0, static_cast<int>(i)) = features2.keypoints[m.trainIdx].pt;
    }

    // Find pair-wise motion
    if (full_affine_)
        matches_info.H = estimateAffine2D(src_points, dst_points, matches_info.inliers_mask);
    else
        matches_info.H = estimateAffinePartial2D(src_points, dst_points, matches_info.inliers_mask);

    if (matches_info.H.empty()) {
        // could not find transformation
        matches_info.confidence = 0;
        matches_info.num_inliers = 0;
        return;
    }

    // Find number of inliers
    matches_info.num_inliers = 0;
    for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
        if (matches_info.inliers_mask[i])
            matches_info.num_inliers++;

    // These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic
    // Image Stitching using Invariant Features"
    matches_info.confidence =
        matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size());

    /* should we remove matches between too close images? */
    // matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence;

    // extend H to represent linear transformation in homogeneous coordinates
    matches_info.H.push_back(Mat::zeros(1, 3, CV_64F));
    matches_info.H.at<double>(2, 2) = 1;
}


} // namespace detail
} // namespace cv