bgfg_KNN.cpp 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#include <math.h>

#include "precomp.hpp"
#include "opencl_kernels_video.hpp"

namespace cv
{

/*!
 The class implements the following algorithm:
 "Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
 Z.Zivkovic, F. van der Heijden
 Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
 http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
*/

// default parameters of gaussian background detection algorithm
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
static const int defaultNsamples = 7; // number of samples saved in memory
static const float defaultDist2Threshold = 20.0f*20.0f;//threshold on distance from the sample

// additional parameters
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation

class BackgroundSubtractorKNNImpl CV_FINAL : public BackgroundSubtractorKNN
{
public:
    //! the default constructor
    BackgroundSubtractorKNNImpl()
    {
    frameSize = Size(0,0);
    frameType = 0;
    nframes = 0;
    history = defaultHistory2;

    //set parameters
    // N - the number of samples stored in memory per model
    nN = defaultNsamples;

    //kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
    nkNN=MAX(1,cvRound(0.1*nN*3+0.40));

    //Tb - Threshold Tb*kernelwidth
    fTb = defaultDist2Threshold;

    // Shadow detection
    bShadowDetection = 1;//turn on
    nShadowDetection =  defaultnShadowDetection2;
    fTau = defaultfTau;// Tau - shadow threshold
    name_ = "BackgroundSubtractor.KNN";
    nLongCounter = 0;
    nMidCounter = 0;
    nShortCounter = 0;
#ifdef HAVE_OPENCL
    opencl_ON = true;
#endif
    }
    //! the full constructor that takes the length of the history,
    // the number of gaussian mixtures, the background ratio parameter and the noise strength
    BackgroundSubtractorKNNImpl(int _history,  float _dist2Threshold, bool _bShadowDetection=true)
    {
    frameSize = Size(0,0);
    frameType = 0;

    nframes = 0;
    history = _history > 0 ? _history : defaultHistory2;

    //set parameters
    // N - the number of samples stored in memory per model
    nN = defaultNsamples;
    //kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
    nkNN=MAX(1,cvRound(0.1*nN*3+0.40));

    //Tb - Threshold Tb*kernelwidth
    fTb = _dist2Threshold>0? _dist2Threshold : defaultDist2Threshold;

    bShadowDetection = _bShadowDetection;
    nShadowDetection =  defaultnShadowDetection2;
    fTau = defaultfTau;
    name_ = "BackgroundSubtractor.KNN";
    nLongCounter = 0;
    nMidCounter = 0;
    nShortCounter = 0;
#ifdef HAVE_OPENCL
    opencl_ON = true;
#endif
    }
    //! the destructor
    ~BackgroundSubtractorKNNImpl() CV_OVERRIDE {}
    //! the update operator
    void apply(InputArray image, OutputArray fgmask, double learningRate) CV_OVERRIDE;

    //! computes a background image which are the mean of all background gaussians
    virtual void getBackgroundImage(OutputArray backgroundImage) const CV_OVERRIDE;

    //! re-initialization method
    void initialize(Size _frameSize, int _frameType)
    {
        frameSize = _frameSize;
        frameType = _frameType;
        nframes = 0;

        int nchannels = CV_MAT_CN(frameType);
        CV_Assert( nchannels <= CV_CN_MAX );

        // Reserve memory for the model
        int size=frameSize.height*frameSize.width;
        //Reset counters
        nShortCounter = 0;
        nMidCounter = 0;
        nLongCounter = 0;

#ifdef HAVE_OPENCL
        if (ocl::isOpenCLActivated() && opencl_ON)
        {
            create_ocl_apply_kernel();

            kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_knn_oclsrc, format( "-D CN=%d -D NSAMPLES=%d", nchannels, nN));

            if (kernel_apply.empty() || kernel_getBg.empty())
                opencl_ON = false;
        }
        else opencl_ON = false;

        if (opencl_ON)
        {
            u_flag.create(frameSize.height * nN * 3, frameSize.width, CV_8UC1);
            u_flag.setTo(Scalar::all(0));

            if (nchannels==3)
                nchannels=4;
            u_sample.create(frameSize.height * nN * 3, frameSize.width, CV_32FC(nchannels));
            u_sample.setTo(Scalar::all(0));

            u_aModelIndexShort.create(frameSize.height, frameSize.width, CV_8UC1);
            u_aModelIndexShort.setTo(Scalar::all(0));
            u_aModelIndexMid.create(frameSize.height, frameSize.width, CV_8UC1);
            u_aModelIndexMid.setTo(Scalar::all(0));
            u_aModelIndexLong.create(frameSize.height, frameSize.width, CV_8UC1);
            u_aModelIndexLong.setTo(Scalar::all(0));

            u_nNextShortUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
            u_nNextShortUpdate.setTo(Scalar::all(0));
            u_nNextMidUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
            u_nNextMidUpdate.setTo(Scalar::all(0));
            u_nNextLongUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
            u_nNextLongUpdate.setTo(Scalar::all(0));
        }
        else
#endif
        {
            // for each sample of 3 speed pixel models each pixel bg model we store ...
            // values + flag (nchannels+1 values)
            bgmodel.create( 1,(nN * 3) * (nchannels+1)* size,CV_8U);
            bgmodel = Scalar::all(0);

            //index through the three circular lists
            aModelIndexShort.create(1,size,CV_8U);
            aModelIndexMid.create(1,size,CV_8U);
            aModelIndexLong.create(1,size,CV_8U);
            //when to update next
            nNextShortUpdate.create(1,size,CV_8U);
            nNextMidUpdate.create(1,size,CV_8U);
            nNextLongUpdate.create(1,size,CV_8U);

            aModelIndexShort = Scalar::all(0);//random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1
            aModelIndexMid = Scalar::all(0);
            aModelIndexLong = Scalar::all(0);
            nNextShortUpdate = Scalar::all(0);
            nNextMidUpdate = Scalar::all(0);
            nNextLongUpdate = Scalar::all(0);
        }
    }

    virtual int getHistory() const CV_OVERRIDE { return history; }
    virtual void setHistory(int _nframes) CV_OVERRIDE { history = _nframes; }

    virtual int getNSamples() const CV_OVERRIDE { return nN; }
    virtual void setNSamples(int _nN) CV_OVERRIDE { nN = _nN; }//needs reinitialization!

    virtual int getkNNSamples() const CV_OVERRIDE { return nkNN; }
    virtual void setkNNSamples(int _nkNN) CV_OVERRIDE { nkNN = _nkNN; }

    virtual double getDist2Threshold() const CV_OVERRIDE { return fTb; }
    virtual void setDist2Threshold(double _dist2Threshold) CV_OVERRIDE { fTb = (float)_dist2Threshold; }

    virtual bool getDetectShadows() const CV_OVERRIDE { return bShadowDetection; }
    virtual void setDetectShadows(bool detectshadows) CV_OVERRIDE
    {
        if (bShadowDetection == detectshadows)
            return;
        bShadowDetection = detectshadows;
#ifdef HAVE_OPENCL
        if (!kernel_apply.empty())
        {
            create_ocl_apply_kernel();
            CV_Assert( !kernel_apply.empty() );
        }
#endif
    }

    virtual int getShadowValue() const CV_OVERRIDE { return nShadowDetection; }
    virtual void setShadowValue(int value) CV_OVERRIDE { nShadowDetection = (uchar)value; }

    virtual double getShadowThreshold() const CV_OVERRIDE { return fTau; }
    virtual void setShadowThreshold(double value) CV_OVERRIDE { fTau = (float)value; }

    virtual void write(FileStorage& fs) const CV_OVERRIDE
    {
        writeFormat(fs);
        fs << "name" << name_
        << "history" << history
        << "nsamples" << nN
        << "nKNN" << nkNN
        << "dist2Threshold" << fTb
        << "detectShadows" << (int)bShadowDetection
        << "shadowValue" << (int)nShadowDetection
        << "shadowThreshold" << fTau;
    }

    virtual void read(const FileNode& fn) CV_OVERRIDE
    {
        CV_Assert( (String)fn["name"] == name_ );
        history = (int)fn["history"];
        nN = (int)fn["nsamples"];
        nkNN = (int)fn["nKNN"];
        fTb = (float)fn["dist2Threshold"];
        bShadowDetection = (int)fn["detectShadows"] != 0;
        nShadowDetection = saturate_cast<uchar>((int)fn["shadowValue"]);
        fTau = (float)fn["shadowThreshold"];
    }

protected:
    Size frameSize;
    int frameType;
    int nframes;
    /////////////////////////
    //very important parameters - things you will change
    ////////////////////////
    int history;
    //alpha=1/history - speed of update - if the time interval you want to average over is T
    //set alpha=1/history. It is also useful at start to make T slowly increase
    //from 1 until the desired T
    float fTb;
    //Tb - threshold on the squared distance from the sample used to decide if it is well described
    //by the background model or not. A typical value could be 2 sigma
    //and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10

    /////////////////////////
    //less important parameters - things you might change but be careful
    ////////////////////////
    int nN;//totlal number of samples
    int nkNN;//number on NN for detecting background - default K=[0.1*nN]

    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiara,"Detecting Moving Shadows...",IEEE PAMI,2003.

    //model data
    int nLongCounter;//circular counter
    int nMidCounter;
    int nShortCounter;
    Mat bgmodel; // model data pixel values
    Mat aModelIndexShort;// index into the models
    Mat aModelIndexMid;
    Mat aModelIndexLong;
    Mat nNextShortUpdate;//random update points per model
    Mat nNextMidUpdate;
    Mat nNextLongUpdate;

#ifdef HAVE_OPENCL
    mutable bool opencl_ON;

    UMat u_flag;
    UMat u_sample;
    UMat u_aModelIndexShort;
    UMat u_aModelIndexMid;
    UMat u_aModelIndexLong;
    UMat u_nNextShortUpdate;
    UMat u_nNextMidUpdate;
    UMat u_nNextLongUpdate;

    mutable ocl::Kernel kernel_apply;
    mutable ocl::Kernel kernel_getBg;
#endif

    String name_;

#ifdef HAVE_OPENCL
    bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
    bool ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate=-1);
    void create_ocl_apply_kernel();
#endif
};

CV_INLINE void
        _cvUpdatePixelBackgroundNP(int x_idx, const uchar* data, int nchannels, int m_nN,
        uchar* m_aModel,
        uchar* m_nNextLongUpdate,
        uchar* m_nNextMidUpdate,
        uchar* m_nNextShortUpdate,
        uchar* m_aModelIndexLong,
        uchar* m_aModelIndexMid,
        uchar* m_aModelIndexShort,
        int m_nLongCounter,
        int m_nMidCounter,
        int m_nShortCounter,
        uchar include
        )
{
    // hold the offset
    int ndata=1+nchannels;
    long offsetLong =  ndata * (m_aModelIndexLong[x_idx] + m_nN * 2);
    long offsetMid =   ndata * (m_aModelIndexMid[x_idx]  + m_nN * 1);
    long offsetShort = ndata * (m_aModelIndexShort[x_idx]);

    // Long update?
    if (m_nNextLongUpdate[x_idx] == m_nLongCounter)
    {
        // add the oldest pixel from Mid to the list of values (for each color)
        memcpy(&m_aModel[offsetLong],&m_aModel[offsetMid],ndata*sizeof(unsigned char));
        // increase the index
        m_aModelIndexLong[x_idx] = (m_aModelIndexLong[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexLong[x_idx] + 1);
    };

    // Mid update?
    if (m_nNextMidUpdate[x_idx] == m_nMidCounter)
    {
        // add this pixel to the list of values (for each color)
        memcpy(&m_aModel[offsetMid],&m_aModel[offsetShort],ndata*sizeof(unsigned char));
        // increase the index
        m_aModelIndexMid[x_idx] = (m_aModelIndexMid[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexMid[x_idx] + 1);
    };

    // Short update?
    if (m_nNextShortUpdate[x_idx] == m_nShortCounter)
    {
        // add this pixel to the list of values (for each color)
        memcpy(&m_aModel[offsetShort],data,nchannels*sizeof(unsigned char));
        //set the include flag
        m_aModel[offsetShort+nchannels]=include;
        // increase the index
        m_aModelIndexShort[x_idx] = (m_aModelIndexShort[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexShort[x_idx] + 1);
    };
}

CV_INLINE int
        _cvCheckPixelBackgroundNP(const uchar* data, int nchannels,
        int m_nN,
        uchar* m_aModel,
        float m_fTb,
        int m_nkNN,
        float tau,
        bool m_bShadowDetection,
        uchar& include)
{
    int Pbf = 0; // the total probability that this pixel is background
    int Pb = 0; //background model probability
    float dData[CV_CN_MAX];

    //uchar& include=data[nchannels];
    include=0;//do we include this pixel into background model?

    int ndata=nchannels+1;
    // now increase the probability for each pixel
    for (int n = 0; n < m_nN*3; n++)
    {
        uchar* mean_m = &m_aModel[n*ndata];

        //calculate difference and distance
        float dist2;

        if( nchannels == 3 )
        {
            dData[0] = (float)mean_m[0] - data[0];
            dData[1] = (float)mean_m[1] - data[1];
            dData[2] = (float)mean_m[2] - data[2];
            dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
        }
        else
        {
            dist2 = 0.f;
            for( int c = 0; c < nchannels; c++ )
            {
                dData[c] = (float)mean_m[c] - data[c];
                dist2 += dData[c]*dData[c];
            }
        }

        if (dist2<m_fTb)
        {
            Pbf++;//all
            //background only
            //if(m_aModel[subPosPixel + nchannels])//indicator
            if(mean_m[nchannels])//indicator
            {
                Pb++;
                if (Pb >= m_nkNN)//Tb
                {
                    include=1;//include
                    return 1;//background ->exit
                };
            }
        };
    };

    //include?
    if (Pbf>=m_nkNN)//m_nTbf)
    {
        include=1;
    }

    int Ps = 0; // the total probability that this pixel is background shadow
    // Detected as moving object, perform shadow detection
    if (m_bShadowDetection)
    {
        for (int n = 0; n < m_nN*3; n++)
        {
            //long subPosPixel = posPixel + n*ndata;
            uchar* mean_m = &m_aModel[n*ndata];

            if(mean_m[nchannels])//check only background
            {
                float numerator = 0.0f;
                float denominator = 0.0f;
                for( int c = 0; c < nchannels; c++ )
                {
                    numerator   += (float)data[c] * mean_m[c];
                    denominator += (float)mean_m[c] * mean_m[c];
                }

                // no division by zero allowed
                if( denominator == 0 )
                    return 0;

                // if tau < a < 1 then also check the color distortion
                if( numerator <= denominator && numerator >= tau*denominator )
                {
                    float a = numerator / denominator;
                    float dist2a = 0.0f;

                    for( int c = 0; c < nchannels; c++ )
                    {
                        float dD= a*mean_m[c] - data[c];
                        dist2a += dD*dD;
                    }

                    if (dist2a<m_fTb*a*a)
                    {
                        Ps++;
                        if (Ps >= m_nkNN)//shadow
                            return 2;
                    };
                };
            };
        };
    }
    return 0;
}

class KNNInvoker : public ParallelLoopBody
{
public:
    KNNInvoker(const Mat& _src, Mat& _dst,
               uchar* _bgmodel,
               uchar* _nNextLongUpdate,
               uchar* _nNextMidUpdate,
               uchar* _nNextShortUpdate,
               uchar* _aModelIndexLong,
               uchar* _aModelIndexMid,
               uchar* _aModelIndexShort,
               int _nLongCounter,
               int _nMidCounter,
               int _nShortCounter,
               int _nN,
               float _fTb,
               int _nkNN,
               float _fTau,
               bool _bShadowDetection,
               uchar _nShadowDetection)
    {
        src = &_src;
        dst = &_dst;
        m_aModel0 = _bgmodel;
        m_nNextLongUpdate0 = _nNextLongUpdate;
        m_nNextMidUpdate0 = _nNextMidUpdate;
        m_nNextShortUpdate0 = _nNextShortUpdate;
        m_aModelIndexLong0 = _aModelIndexLong;
        m_aModelIndexMid0 = _aModelIndexMid;
        m_aModelIndexShort0 = _aModelIndexShort;
        m_nLongCounter = _nLongCounter;
        m_nMidCounter = _nMidCounter;
        m_nShortCounter = _nShortCounter;
        m_nN = _nN;
        m_fTb = _fTb;
        m_fTau = _fTau;
        m_nkNN = _nkNN;
        m_bShadowDetection = _bShadowDetection;
        m_nShadowDetection = _nShadowDetection;
    }

    void operator()(const Range& range) const CV_OVERRIDE
    {
        int y0 = range.start, y1 = range.end;
        int ncols = src->cols, nchannels = src->channels();
        int ndata=nchannels+1;

        for ( int y = y0; y < y1; y++ )
        {
            const uchar* data = src->ptr(y);
            uchar* m_aModel = m_aModel0 + ncols*m_nN*3*ndata*y;
            uchar* m_nNextLongUpdate = m_nNextLongUpdate0 + ncols*y;
            uchar* m_nNextMidUpdate = m_nNextMidUpdate0 + ncols*y;
            uchar* m_nNextShortUpdate = m_nNextShortUpdate0 + ncols*y;
            uchar* m_aModelIndexLong = m_aModelIndexLong0 + ncols*y;
            uchar* m_aModelIndexMid = m_aModelIndexMid0 + ncols*y;
            uchar* m_aModelIndexShort = m_aModelIndexShort0 + ncols*y;
            uchar* mask = dst->ptr(y);

            for ( int x = 0; x < ncols; x++ )
            {

                //update model+ background subtract
                uchar include=0;
                int result= _cvCheckPixelBackgroundNP(data, nchannels,
                        m_nN, m_aModel, m_fTb,m_nkNN, m_fTau,m_bShadowDetection,include);

                _cvUpdatePixelBackgroundNP(x,data,nchannels,
                        m_nN, m_aModel,
                        m_nNextLongUpdate,
                        m_nNextMidUpdate,
                        m_nNextShortUpdate,
                        m_aModelIndexLong,
                        m_aModelIndexMid,
                        m_aModelIndexShort,
                        m_nLongCounter,
                        m_nMidCounter,
                        m_nShortCounter,
                        include
                        );
                switch (result)
                {
                    case 0:
                        //foreground
                        mask[x] = 255;
                        break;
                    case 1:
                        //background
                        mask[x] = 0;
                        break;
                    case 2:
                        //shadow
                        mask[x] = m_nShadowDetection;
                        break;
                }
                data += nchannels;
                m_aModel += m_nN*3*ndata;
            }
        }
    }

    const Mat* src;
    Mat* dst;
    uchar* m_aModel0;
    uchar* m_nNextLongUpdate0;
    uchar* m_nNextMidUpdate0;
    uchar* m_nNextShortUpdate0;
    uchar* m_aModelIndexLong0;
    uchar* m_aModelIndexMid0;
    uchar* m_aModelIndexShort0;
    int m_nLongCounter;
    int m_nMidCounter;
    int m_nShortCounter;
    int m_nN;
    float m_fTb;
    float m_fTau;
    int m_nkNN;
    bool m_bShadowDetection;
    uchar m_nShadowDetection;
};

#ifdef HAVE_OPENCL
bool BackgroundSubtractorKNNImpl::ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
    bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;

    if( needToInitialize )
        initialize(_image.size(), _image.type());

    ++nframes;
    learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
    CV_Assert(learningRate >= 0);

    _fgmask.create(_image.size(), CV_8U);
    UMat fgmask = _fgmask.getUMat();

    UMat frame = _image.getUMat();

    //recalculate update rates - in case alpha is changed
    // calculate update parameters (using alpha)
    int Kshort,Kmid,Klong;
    //approximate exponential learning curve
    Kshort=(int)(log(0.7)/log(1-learningRate))+1;//Kshort
    Kmid=(int)(log(0.4)/log(1-learningRate))-Kshort+1;//Kmid
    Klong=(int)(log(0.1)/log(1-learningRate))-Kshort-Kmid+1;//Klong

    //refresh rates
    int nShortUpdate = (Kshort/nN)+1;
    int nMidUpdate = (Kmid/nN)+1;
    int nLongUpdate = (Klong/nN)+1;

    int idxArg = 0;
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextLongUpdate));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextMidUpdate));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextShortUpdate));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexLong));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexMid));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexShort));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_flag));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_sample));
    idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));

    idxArg = kernel_apply.set(idxArg, nLongCounter);
    idxArg = kernel_apply.set(idxArg, nMidCounter);
    idxArg = kernel_apply.set(idxArg, nShortCounter);
    idxArg = kernel_apply.set(idxArg, fTb);
    idxArg = kernel_apply.set(idxArg, nkNN);
    idxArg = kernel_apply.set(idxArg, fTau);
    if (bShadowDetection)
        kernel_apply.set(idxArg, nShadowDetection);

    size_t globalsize[2] = {(size_t)frame.cols, (size_t)frame.rows};
    if(!kernel_apply.run(2, globalsize, NULL, true))
        return false;

    nShortCounter++;//0,1,...,nShortUpdate-1
    nMidCounter++;
    nLongCounter++;
    if (nShortCounter >= nShortUpdate)
    {
        nShortCounter = 0;
        randu(u_nNextShortUpdate, Scalar::all(0),  Scalar::all(nShortUpdate));
    }
    if (nMidCounter >= nMidUpdate)
    {
        nMidCounter = 0;
        randu(u_nNextMidUpdate, Scalar::all(0),  Scalar::all(nMidUpdate));
    }
    if (nLongCounter >= nLongUpdate)
    {
        nLongCounter = 0;
        randu(u_nNextLongUpdate, Scalar::all(0),  Scalar::all(nLongUpdate));
    }
    return true;
}

bool BackgroundSubtractorKNNImpl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
{
    _backgroundImage.create(frameSize, frameType);
    UMat dst = _backgroundImage.getUMat();

    int idxArg = 0;
    idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_flag));
    idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_sample));
    idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnly(dst));

    size_t globalsize[2] = {(size_t)dst.cols, (size_t)dst.rows};

    return kernel_getBg.run(2, globalsize, NULL, false);
}

void BackgroundSubtractorKNNImpl::create_ocl_apply_kernel()
{
    int nchannels = CV_MAT_CN(frameType);
    String opts = format("-D CN=%d -D NSAMPLES=%d%s", nchannels, nN, bShadowDetection ? " -D SHADOW_DETECT" : "");
    kernel_apply.create("knn_kernel", ocl::video::bgfg_knn_oclsrc, opts);
}

#endif

void BackgroundSubtractorKNNImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
    CV_INSTRUMENT_REGION();

#ifdef HAVE_OPENCL
    if (opencl_ON)
    {
#ifndef __APPLE__
        CV_OCL_RUN(_fgmask.isUMat() && OCL_PERFORMANCE_CHECK(!ocl::Device::getDefault().isIntel() || _image.channels() == 1),
                   ocl_apply(_image, _fgmask, learningRate))
#else
        CV_OCL_RUN(_fgmask.isUMat() && OCL_PERFORMANCE_CHECK(!ocl::Device::getDefault().isIntel()),
                   ocl_apply(_image, _fgmask, learningRate))
#endif

        opencl_ON = false;
        nframes = 0;
    }
#endif

    bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;

    if( needToInitialize )
        initialize(_image.size(), _image.type());

    Mat image = _image.getMat();
    _fgmask.create( image.size(), CV_8U );
    Mat fgmask = _fgmask.getMat();

    ++nframes;
    learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
    CV_Assert(learningRate >= 0);

    //recalculate update rates - in case alpha is changed
    // calculate update parameters (using alpha)
    int Kshort,Kmid,Klong;
    //approximate exponential learning curve
    Kshort=(int)(log(0.7)/log(1-learningRate))+1;//Kshort
    Kmid=(int)(log(0.4)/log(1-learningRate))-Kshort+1;//Kmid
    Klong=(int)(log(0.1)/log(1-learningRate))-Kshort-Kmid+1;//Klong

    //refresh rates
    int nShortUpdate = (Kshort/nN)+1;
    int nMidUpdate = (Kmid/nN)+1;
    int nLongUpdate = (Klong/nN)+1;

    parallel_for_(Range(0, image.rows),
                  KNNInvoker(image, fgmask,
                             bgmodel.ptr(),
                             nNextLongUpdate.ptr(),
                             nNextMidUpdate.ptr(),
                             nNextShortUpdate.ptr(),
                             aModelIndexLong.ptr(),
                             aModelIndexMid.ptr(),
                             aModelIndexShort.ptr(),
                             nLongCounter,
                             nMidCounter,
                             nShortCounter,
                             nN,
                             fTb,
                             nkNN,
                             fTau,
                             bShadowDetection,
                             nShadowDetection),
                             image.total()/(double)(1 << 16));

    nShortCounter++;//0,1,...,nShortUpdate-1
    nMidCounter++;
    nLongCounter++;
    if (nShortCounter >= nShortUpdate)
    {
        nShortCounter = 0;
        randu(nNextShortUpdate, Scalar::all(0),  Scalar::all(nShortUpdate));
    }
    if (nMidCounter >= nMidUpdate)
    {
        nMidCounter = 0;
        randu(nNextMidUpdate, Scalar::all(0),  Scalar::all(nMidUpdate));
    }
    if (nLongCounter >= nLongUpdate)
    {
        nLongCounter = 0;
        randu(nNextLongUpdate, Scalar::all(0),  Scalar::all(nLongUpdate));
    }
}

void BackgroundSubtractorKNNImpl::getBackgroundImage(OutputArray backgroundImage) const
{
    CV_INSTRUMENT_REGION();

#ifdef HAVE_OPENCL
    if (opencl_ON)
    {
        CV_OCL_RUN(opencl_ON, ocl_getBackgroundImage(backgroundImage))

        opencl_ON = false;
    }
#endif

    int nchannels = CV_MAT_CN(frameType);
    //CV_Assert( nchannels == 3 );
    Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));

    int ndata=nchannels+1;
    int modelstep=(ndata * nN * 3);

    const uchar* pbgmodel=bgmodel.ptr(0);
    for(int row=0; row<meanBackground.rows; row++)
    {
        for(int col=0; col<meanBackground.cols; col++)
        {
            for (int n = 0; n < nN*3; n++)
            {
                const uchar* mean_m = &pbgmodel[n*ndata];
                if (mean_m[nchannels])
                {
                    meanBackground.at<Vec3b>(row, col) = Vec3b(mean_m);
                    break;
                }
            }
            pbgmodel=pbgmodel+modelstep;
        }
    }

    switch(CV_MAT_CN(frameType))
    {
        case 1:
        {
            std::vector<Mat> channels;
            split(meanBackground, channels);
            channels[0].copyTo(backgroundImage);
            break;
        }
        case 3:
        {
            meanBackground.copyTo(backgroundImage);
            break;
        }
        default:
            CV_Error(Error::StsUnsupportedFormat, "");
    }
}


Ptr<BackgroundSubtractorKNN> createBackgroundSubtractorKNN(int _history, double _threshold2,
                                                           bool _bShadowDetection)
{
    return makePtr<BackgroundSubtractorKNNImpl>(_history, (float)_threshold2, _bShadowDetection);
}

}

/* End of file. */