bgfg_knn.cl 8.61 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2018 Ya-Chiu Wu, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Ya-Chiu Wu, yacwu@cs.nctu.edu.tw
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if CN==1

#define T_MEAN float
#define F_ZERO (0.0f)

#define frameToMean(a, b) (b) = *(a);
#define meanToFrame(a, b) *b = convert_uchar_sat(a);

#else

#define T_MEAN float4
#define F_ZERO (0.0f, 0.0f, 0.0f, 0.0f)

#define meanToFrame(a, b)\
    b[0] = convert_uchar_sat(a.x); \
    b[1] = convert_uchar_sat(a.y); \
    b[2] = convert_uchar_sat(a.z);

#define frameToMean(a, b)\
    b.x = a[0]; \
    b.y = a[1]; \
    b.z = a[2]; \
    b.w = 0.0f;

#endif

__kernel void knn_kernel(__global const uchar* frame, int frame_step, int frame_offset, int frame_row, int frame_col,
                         __global const uchar* nNextLongUpdate,
                         __global const uchar* nNextMidUpdate,
                         __global const uchar* nNextShortUpdate,
                         __global uchar* aModelIndexLong,
                         __global uchar* aModelIndexMid,
                         __global uchar* aModelIndexShort,
                         __global uchar* flag,
                         __global uchar* sample,
                         __global uchar* fgmask, int fgmask_step, int fgmask_offset,
                         int nLongCounter, int nMidCounter, int nShortCounter,
                         float c_Tb, int c_nkNN, float c_tau
#ifdef SHADOW_DETECT
                         , uchar c_shadowVal
#endif
                         )
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if( x < frame_col && y < frame_row)
    {
        __global const uchar* _frame = (frame + mad24(y, frame_step, mad24(x, CN, frame_offset)));
        T_MEAN pix;
        frameToMean(_frame, pix);

        uchar foreground = 255; // 0 - the pixel classified as background

        int Pbf = 0;
        int Pb = 0;
        uchar include = 0;

        int pt_idx =  mad24(y, frame_col, x);
        int idx_step = frame_row * frame_col;

        __global T_MEAN* _sample = (__global T_MEAN*)(sample);

        for (uchar n = 0; n < (NSAMPLES) * 3 ; ++n)
        {
            int n_idx = mad24(n, idx_step, pt_idx);

            T_MEAN c_mean = _sample[n_idx];

            uchar c_flag = flag[n_idx];

            T_MEAN diff = c_mean - pix;
            float dist2 = dot(diff, diff);

            if (dist2 < c_Tb)
            {
                Pbf++;
                if (c_flag)
                {
                    Pb++;
                    if (Pb >= c_nkNN)
                    {
                        include = 1;
                        foreground = 0;
                        break;
                    }
                }
            }
        }
        if (Pbf >= c_nkNN)
        {
            include = 1;
        }

#ifdef SHADOW_DETECT
        if (foreground)
        {
            int Ps = 0;
            for (uchar n = 0; n < (NSAMPLES) * 3 ; ++n)
            {
                int n_idx = mad24(n, idx_step, pt_idx);
                uchar c_flag = flag[n_idx];

                if (c_flag)
                {
                    T_MEAN c_mean = _sample[n_idx];

                    float numerator = dot(pix, c_mean);
                    float denominator = dot(c_mean, c_mean);

                    if (denominator == 0)
                        break;

                    if (numerator <= denominator && numerator >= c_tau * denominator)
                    {
                        float a = numerator / denominator;

                        T_MEAN dD = mad(a, c_mean, -pix);

                        if (dot(dD, dD) < c_Tb * a * a)
                        {
                            Ps++;
                            if (Ps >= c_nkNN)
                            {
                                foreground = c_shadowVal;
                                break;
                            }
                        }
                    }
                }
            }
        }
#endif
        __global uchar* _fgmask = fgmask + mad24(y, fgmask_step, x + fgmask_offset);
        *_fgmask = (uchar)foreground;

        __global const uchar* _nNextLongUpdate = nNextLongUpdate + pt_idx;
        __global const uchar* _nNextMidUpdate = nNextMidUpdate + pt_idx;
        __global const uchar* _nNextShortUpdate = nNextShortUpdate + pt_idx;
        __global uchar* _aModelIndexLong = aModelIndexLong + pt_idx;
        __global uchar* _aModelIndexMid = aModelIndexMid + pt_idx;
        __global uchar* _aModelIndexShort = aModelIndexShort + pt_idx;

        uchar nextLongUpdate = _nNextLongUpdate[0];
        uchar nextMidUpdate = _nNextMidUpdate[0];
        uchar nextShortUpdate = _nNextShortUpdate[0];
        uchar modelIndexLong = _aModelIndexLong[0];
        uchar modelIndexMid = _aModelIndexMid[0];
        uchar modelIndexShort = _aModelIndexShort[0];
        int offsetLong = mad24(mad24(2, (NSAMPLES), modelIndexLong), idx_step, pt_idx);
        int offsetMid = mad24((NSAMPLES)+modelIndexMid, idx_step, pt_idx);
        int offsetShort = mad24(modelIndexShort, idx_step, pt_idx);
        if (nextLongUpdate == nLongCounter)
        {
            _sample[offsetLong] = _sample[offsetMid];
            flag[offsetLong] = flag[offsetMid];
            _aModelIndexLong[0] = (modelIndexLong >= ((NSAMPLES)-1)) ? 0 : (modelIndexLong + 1);
        }

        if (nextMidUpdate == nMidCounter)
        {
            _sample[offsetMid] = _sample[offsetShort];
            flag[offsetMid] = flag[offsetShort];
            _aModelIndexMid[0] = (modelIndexMid >= ((NSAMPLES)-1)) ? 0 : (modelIndexMid + 1);
        }

        if (nextShortUpdate == nShortCounter)
        {
            _sample[offsetShort] = pix;
            flag[offsetShort] = include;
            _aModelIndexShort[0] = (modelIndexShort >= ((NSAMPLES)-1)) ? 0 : (modelIndexShort + 1);
        }
    }
}

__kernel void getBackgroundImage2_kernel(__global const uchar* flag,
                                         __global const uchar* sample,
                                         __global uchar* dst, int dst_step, int dst_offset, int dst_row, int dst_col)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if(x < dst_col && y < dst_row)
    {
        int pt_idx =  mad24(y, dst_col, x);

        T_MEAN meanVal = (T_MEAN)F_ZERO;

        __global T_MEAN* _sample = (__global T_MEAN*)(sample);
        int idx_step = dst_row * dst_col;
        for (uchar n = 0; n < (NSAMPLES) * 3 ; ++n)
        {
            int n_idx = mad24(n, idx_step, pt_idx);
            uchar c_flag = flag[n_idx];
            if(c_flag)
            {
                meanVal = _sample[n_idx];
                break;
            }
        }
        __global uchar* _dst = dst + mad24(y, dst_step, mad24(x, CN, dst_offset));
        meanToFrame(meanVal, _dst);
    }
}