sift.dispatch.cpp 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2020, Intel Corporation, all rights reserved.

/**********************************************************************************************\
 Implementation of SIFT is based on the code from http://blogs.oregonstate.edu/hess/code/sift/
 Below is the original copyright.
 Patent US6711293 expired in March 2020.

//    Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
//    All rights reserved.

//    The following patent has been issued for methods embodied in this
//    software: "Method and apparatus for identifying scale invariant features
//    in an image and use of same for locating an object in an image," David
//    G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application
//    filed March 8, 1999. Asignee: The University of British Columbia. For
//    further details, contact David Lowe (lowe@cs.ubc.ca) or the
//    University-Industry Liaison Office of the University of British
//    Columbia.

//    Note that restrictions imposed by this patent (and possibly others)
//    exist independently of and may be in conflict with the freedoms granted
//    in this license, which refers to copyright of the program, not patents
//    for any methods that it implements.  Both copyright and patent law must
//    be obeyed to legally use and redistribute this program and it is not the
//    purpose of this license to induce you to infringe any patents or other
//    property right claims or to contest validity of any such claims.  If you
//    redistribute or use the program, then this license merely protects you
//    from committing copyright infringement.  It does not protect you from
//    committing patent infringement.  So, before you do anything with this
//    program, make sure that you have permission to do so not merely in terms
//    of copyright, but also in terms of patent law.

//    Please note that this license is not to be understood as a guarantee
//    either.  If you use the program according to this license, but in
//    conflict with patent law, it does not mean that the licensor will refund
//    you for any losses that you incur if you are sued for your patent
//    infringement.

//    Redistribution and use in source and binary forms, with or without
//    modification, are permitted provided that the following conditions are
//    met:
//        * Redistributions of source code must retain the above copyright and
//          patent notices, this list of conditions and the following
//          disclaimer.
//        * Redistributions in binary form must reproduce the above copyright
//          notice, this list of conditions and the following disclaimer in
//          the documentation and/or other materials provided with the
//          distribution.
//        * Neither the name of Oregon State University nor the names of its
//          contributors may be used to endorse or promote products derived
//          from this software without specific prior written permission.

//    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
//    IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
//    TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
//    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
//    HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
//    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
//    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
//    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
//    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
//    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\**********************************************************************************************/

#include "precomp.hpp"
#include <opencv2/core/hal/hal.hpp>
#include <opencv2/core/utils/tls.hpp>

#include "sift.simd.hpp"
#include "sift.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content

namespace cv {

/*!
 SIFT implementation.

 The class implements SIFT algorithm by D. Lowe.
 */
class SIFT_Impl : public SIFT
{
public:
    explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3,
                          double contrastThreshold = 0.04, double edgeThreshold = 10,
                          double sigma = 1.6, int descriptorType = CV_32F );

    //! returns the descriptor size in floats (128)
    int descriptorSize() const CV_OVERRIDE;

    //! returns the descriptor type
    int descriptorType() const CV_OVERRIDE;

    //! returns the default norm type
    int defaultNorm() const CV_OVERRIDE;

    //! finds the keypoints and computes descriptors for them using SIFT algorithm.
    //! Optionally it can compute descriptors for the user-provided keypoints
    void detectAndCompute(InputArray img, InputArray mask,
                    std::vector<KeyPoint>& keypoints,
                    OutputArray descriptors,
                    bool useProvidedKeypoints = false) CV_OVERRIDE;

    void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const;
    void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const;
    void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
                               std::vector<KeyPoint>& keypoints ) const;

protected:
    CV_PROP_RW int nfeatures;
    CV_PROP_RW int nOctaveLayers;
    CV_PROP_RW double contrastThreshold;
    CV_PROP_RW double edgeThreshold;
    CV_PROP_RW double sigma;
    CV_PROP_RW int descriptor_type;
};

Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
                     double _contrastThreshold, double _edgeThreshold, double _sigma )
{
    CV_TRACE_FUNCTION();

    return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma, CV_32F);
}

Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
                     double _contrastThreshold, double _edgeThreshold, double _sigma, int _descriptorType )
{
    CV_TRACE_FUNCTION();

    // SIFT descriptor supports 32bit floating point and 8bit unsigned int.
    CV_Assert(_descriptorType == CV_32F || _descriptorType == CV_8U);
    return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma, _descriptorType);
}

String SIFT::getDefaultName() const
{
    return (Feature2D::getDefaultName() + ".SIFT");
}

static inline void
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
{
    octave = kpt.octave & 255;
    layer = (kpt.octave >> 8) & 255;
    octave = octave < 128 ? octave : (-128 | octave);
    scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave);
}

static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma )
{
    CV_TRACE_FUNCTION();

    Mat gray, gray_fpt;
    if( img.channels() == 3 || img.channels() == 4 )
    {
        cvtColor(img, gray, COLOR_BGR2GRAY);
        gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
    }
    else
        img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);

    float sig_diff;

    if( doubleImageSize )
    {
        sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) );
        Mat dbl;
#if DoG_TYPE_SHORT
        resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT);
#else
        resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
#endif
        Mat result;
        GaussianBlur(dbl, result, Size(), sig_diff, sig_diff);
        return result;
    }
    else
    {
        sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01f) );
        Mat result;
        GaussianBlur(gray_fpt, result, Size(), sig_diff, sig_diff);
        return result;
    }
}


void SIFT_Impl::buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const
{
    CV_TRACE_FUNCTION();

    std::vector<double> sig(nOctaveLayers + 3);
    pyr.resize(nOctaves*(nOctaveLayers + 3));

    // precompute Gaussian sigmas using the following formula:
    //  \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
    sig[0] = sigma;
    double k = std::pow( 2., 1. / nOctaveLayers );
    for( int i = 1; i < nOctaveLayers + 3; i++ )
    {
        double sig_prev = std::pow(k, (double)(i-1))*sigma;
        double sig_total = sig_prev*k;
        sig[i] = std::sqrt(sig_total*sig_total - sig_prev*sig_prev);
    }

    for( int o = 0; o < nOctaves; o++ )
    {
        for( int i = 0; i < nOctaveLayers + 3; i++ )
        {
            Mat& dst = pyr[o*(nOctaveLayers + 3) + i];
            if( o == 0  &&  i == 0 )
                dst = base;
            // base of new octave is halved image from end of previous octave
            else if( i == 0 )
            {
                const Mat& src = pyr[(o-1)*(nOctaveLayers + 3) + nOctaveLayers];
                resize(src, dst, Size(src.cols/2, src.rows/2),
                       0, 0, INTER_NEAREST);
            }
            else
            {
                const Mat& src = pyr[o*(nOctaveLayers + 3) + i-1];
                GaussianBlur(src, dst, Size(), sig[i], sig[i]);
            }
        }
    }
}


class buildDoGPyramidComputer : public ParallelLoopBody
{
public:
    buildDoGPyramidComputer(
        int _nOctaveLayers,
        const std::vector<Mat>& _gpyr,
        std::vector<Mat>& _dogpyr)
        : nOctaveLayers(_nOctaveLayers),
          gpyr(_gpyr),
          dogpyr(_dogpyr) { }

    void operator()( const cv::Range& range ) const CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();

        const int begin = range.start;
        const int end = range.end;

        for( int a = begin; a < end; a++ )
        {
            const int o = a / (nOctaveLayers + 2);
            const int i = a % (nOctaveLayers + 2);

            const Mat& src1 = gpyr[o*(nOctaveLayers + 3) + i];
            const Mat& src2 = gpyr[o*(nOctaveLayers + 3) + i + 1];
            Mat& dst = dogpyr[o*(nOctaveLayers + 2) + i];
            subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type);
        }
    }

private:
    int nOctaveLayers;
    const std::vector<Mat>& gpyr;
    std::vector<Mat>& dogpyr;
};

void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>& dogpyr ) const
{
    CV_TRACE_FUNCTION();

    int nOctaves = (int)gpyr.size()/(nOctaveLayers + 3);
    dogpyr.resize( nOctaves*(nOctaveLayers + 2) );

    parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr));
}

class findScaleSpaceExtremaComputer : public ParallelLoopBody
{
public:
    findScaleSpaceExtremaComputer(
        int _o,
        int _i,
        int _threshold,
        int _idx,
        int _step,
        int _cols,
        int _nOctaveLayers,
        double _contrastThreshold,
        double _edgeThreshold,
        double _sigma,
        const std::vector<Mat>& _gauss_pyr,
        const std::vector<Mat>& _dog_pyr,
        TLSData<std::vector<KeyPoint> > &_tls_kpts_struct)

        : o(_o),
          i(_i),
          threshold(_threshold),
          idx(_idx),
          step(_step),
          cols(_cols),
          nOctaveLayers(_nOctaveLayers),
          contrastThreshold(_contrastThreshold),
          edgeThreshold(_edgeThreshold),
          sigma(_sigma),
          gauss_pyr(_gauss_pyr),
          dog_pyr(_dog_pyr),
          tls_kpts_struct(_tls_kpts_struct) { }
    void operator()( const cv::Range& range ) const CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();

        std::vector<KeyPoint>& kpts = tls_kpts_struct.getRef();

        CV_CPU_DISPATCH(findScaleSpaceExtrema, (o, i, threshold, idx, step, cols, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, gauss_pyr, dog_pyr, kpts, range),
            CV_CPU_DISPATCH_MODES_ALL);
    }
private:
    int o, i;
    int threshold;
    int idx, step, cols;
    int nOctaveLayers;
    double contrastThreshold;
    double edgeThreshold;
    double sigma;
    const std::vector<Mat>& gauss_pyr;
    const std::vector<Mat>& dog_pyr;
    TLSData<std::vector<KeyPoint> > &tls_kpts_struct;
};

//
// Detects features at extrema in DoG scale space.  Bad features are discarded
// based on contrast and ratio of principal curvatures.
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
                                  std::vector<KeyPoint>& keypoints ) const
{
    CV_TRACE_FUNCTION();

    const int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
    const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);

    keypoints.clear();
    TLSDataAccumulator<std::vector<KeyPoint> > tls_kpts_struct;

    for( int o = 0; o < nOctaves; o++ )
        for( int i = 1; i <= nOctaveLayers; i++ )
        {
            const int idx = o*(nOctaveLayers+2)+i;
            const Mat& img = dog_pyr[idx];
            const int step = (int)img.step1();
            const int rows = img.rows, cols = img.cols;

            parallel_for_(Range(SIFT_IMG_BORDER, rows-SIFT_IMG_BORDER),
                findScaleSpaceExtremaComputer(
                    o, i, threshold, idx, step, cols,
                    nOctaveLayers,
                    contrastThreshold,
                    edgeThreshold,
                    sigma,
                    gauss_pyr, dog_pyr, tls_kpts_struct));
        }

    std::vector<std::vector<KeyPoint>*> kpt_vecs;
    tls_kpts_struct.gather(kpt_vecs);
    for (size_t i = 0; i < kpt_vecs.size(); ++i) {
        keypoints.insert(keypoints.end(), kpt_vecs[i]->begin(), kpt_vecs[i]->end());
    }
}


static
void calcSIFTDescriptor(
        const Mat& img, Point2f ptf, float ori, float scl,
        int d, int n, Mat& dst, int row
)
{
    CV_TRACE_FUNCTION();

    CV_CPU_DISPATCH(calcSIFTDescriptor, (img, ptf, ori, scl, d, n, dst, row),
        CV_CPU_DISPATCH_MODES_ALL);
}

class calcDescriptorsComputer : public ParallelLoopBody
{
public:
    calcDescriptorsComputer(const std::vector<Mat>& _gpyr,
                            const std::vector<KeyPoint>& _keypoints,
                            Mat& _descriptors,
                            int _nOctaveLayers,
                            int _firstOctave)
        : gpyr(_gpyr),
          keypoints(_keypoints),
          descriptors(_descriptors),
          nOctaveLayers(_nOctaveLayers),
          firstOctave(_firstOctave) { }

    void operator()( const cv::Range& range ) const CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();

        const int begin = range.start;
        const int end = range.end;

        static const int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS;

        for ( int i = begin; i<end; i++ )
        {
            KeyPoint kpt = keypoints[i];
            int octave, layer;
            float scale;
            unpackOctave(kpt, octave, layer, scale);
            CV_Assert(octave >= firstOctave && layer <= nOctaveLayers+2);
            float size=kpt.size*scale;
            Point2f ptf(kpt.pt.x*scale, kpt.pt.y*scale);
            const Mat& img = gpyr[(octave - firstOctave)*(nOctaveLayers + 3) + layer];

            float angle = 360.f - kpt.angle;
            if(std::abs(angle - 360.f) < FLT_EPSILON)
                angle = 0.f;
            calcSIFTDescriptor(img, ptf, angle, size*0.5f, d, n, descriptors, i);
        }
    }
private:
    const std::vector<Mat>& gpyr;
    const std::vector<KeyPoint>& keypoints;
    Mat& descriptors;
    int nOctaveLayers;
    int firstOctave;
};

static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyPoint>& keypoints,
                            Mat& descriptors, int nOctaveLayers, int firstOctave )
{
    CV_TRACE_FUNCTION();
    parallel_for_(Range(0, static_cast<int>(keypoints.size())), calcDescriptorsComputer(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave));
}

//////////////////////////////////////////////////////////////////////////////////////////

SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers,
           double _contrastThreshold, double _edgeThreshold, double _sigma, int _descriptorType )
    : nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
    contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma), descriptor_type(_descriptorType)
{
}

int SIFT_Impl::descriptorSize() const
{
    return SIFT_DESCR_WIDTH*SIFT_DESCR_WIDTH*SIFT_DESCR_HIST_BINS;
}

int SIFT_Impl::descriptorType() const
{
    return descriptor_type;
}

int SIFT_Impl::defaultNorm() const
{
    return NORM_L2;
}


void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
                      std::vector<KeyPoint>& keypoints,
                      OutputArray _descriptors,
                      bool useProvidedKeypoints)
{
    CV_TRACE_FUNCTION();

    int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0;
    Mat image = _image.getMat(), mask = _mask.getMat();

    if( image.empty() || image.depth() != CV_8U )
        CV_Error( Error::StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );

    if( !mask.empty() && mask.type() != CV_8UC1 )
        CV_Error( Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)" );

    if( useProvidedKeypoints )
    {
        firstOctave = 0;
        int maxOctave = INT_MIN;
        for( size_t i = 0; i < keypoints.size(); i++ )
        {
            int octave, layer;
            float scale;
            unpackOctave(keypoints[i], octave, layer, scale);
            firstOctave = std::min(firstOctave, octave);
            maxOctave = std::max(maxOctave, octave);
            actualNLayers = std::max(actualNLayers, layer-2);
        }

        firstOctave = std::min(firstOctave, 0);
        CV_Assert( firstOctave >= -1 && actualNLayers <= nOctaveLayers );
        actualNOctaves = maxOctave - firstOctave + 1;
    }

    Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
    std::vector<Mat> gpyr;
    int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave;

    //double t, tf = getTickFrequency();
    //t = (double)getTickCount();
    buildGaussianPyramid(base, gpyr, nOctaves);

    //t = (double)getTickCount() - t;
    //printf("pyramid construction time: %g\n", t*1000./tf);

    if( !useProvidedKeypoints )
    {
        std::vector<Mat> dogpyr;
        buildDoGPyramid(gpyr, dogpyr);
        //t = (double)getTickCount();
        findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
        KeyPointsFilter::removeDuplicatedSorted( keypoints );

        if( nfeatures > 0 )
            KeyPointsFilter::retainBest(keypoints, nfeatures);
        //t = (double)getTickCount() - t;
        //printf("keypoint detection time: %g\n", t*1000./tf);

        if( firstOctave < 0 )
            for( size_t i = 0; i < keypoints.size(); i++ )
            {
                KeyPoint& kpt = keypoints[i];
                float scale = 1.f/(float)(1 << -firstOctave);
                kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255);
                kpt.pt *= scale;
                kpt.size *= scale;
            }

        if( !mask.empty() )
            KeyPointsFilter::runByPixelsMask( keypoints, mask );
    }
    else
    {
        // filter keypoints by mask
        //KeyPointsFilter::runByPixelsMask( keypoints, mask );
    }

    if( _descriptors.needed() )
    {
        //t = (double)getTickCount();
        int dsize = descriptorSize();
        _descriptors.create((int)keypoints.size(), dsize, descriptor_type);

        Mat descriptors = _descriptors.getMat();
        calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave);
        //t = (double)getTickCount() - t;
        //printf("descriptor extraction time: %g\n", t*1000./tf);
    }
}

}