gonnxbackend.cpp
45.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#include "precomp.hpp"
#include "backends/onnx/gonnxbackend.hpp"
#ifdef HAVE_ONNX
#include <ade/util/algorithm.hpp> // any_of
#include <ade/util/zip_range.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/gframe.hpp>
#include <codecvt> // wstring_convert
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
#include "logger.hpp"
namespace {
struct ONNXCallContext;
}
namespace cv {
namespace gimpl {
namespace onnx {
enum TensorPosition : int {
INPUT,
OUTPUT
};
static std::string pdims(const std::vector<int64_t> &dims) {
std::stringstream ss;
auto it = dims.begin();
ss << *it++;
for (; it != dims.end(); ++it) {
ss << '/' << *it;
}
return ss.str();
}
struct TensorInfo {
TensorInfo() = default;
explicit TensorInfo(const Ort::TensorTypeAndShapeInfo& info)
: dims(info.GetShape())
, type(info.GetElementType())
, is_dynamic(ade::util::find(dims, -1) != dims.end()) {
// Double-check if the tensor is really dynamic
// Allow N to be -1
if (is_dynamic
&& dims[0] == -1
&& dims.size() > 1
&& std::find(dims.begin() + 1, dims.end(), -1) == dims.end()) {
GAPI_LOG_WARNING(NULL, "Promoting N=-1 to N=1 for tensor " << pdims(dims));
dims[0] = 1;
is_dynamic = false;
}
if (!is_dynamic) {
size = std::accumulate(dims.begin(),
dims.end(),
static_cast<int64_t>(1),
std::multiplies<int64_t>());
}
// Heuristic: check if the tensor is grayscale input
if (dims.size() == 4u
&& dims[0] == 1
&& dims[1] == 1
&& dims[2] > 1
&& dims[3] > 1) {
is_grayscale = true;
}
}
std::string name;
std::vector<int64_t> dims;
ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
int64_t size = -1;
bool normalize = true;
bool is_dynamic = false;
bool is_grayscale = false;
struct MeanStdev {
cv::Scalar mean;
cv::Scalar stdev;
};
cv::util::optional<MeanStdev> mstd;
};
using Views = std::vector<std::unique_ptr<cv::MediaFrame::View>>;
class ONNXCompiled {
// ONNX Resources
// NOTE: Env must live with the session, otherwise segfaults.
Ort::Env this_env{nullptr};
Ort::Session this_session{nullptr};
Ort::MemoryInfo this_memory_info{nullptr};
std::vector<TensorInfo> in_tensor_info;
std::vector<TensorInfo> out_tensor_info;
bool is_dynamic = false;
bool is_postproc = false;
// G-API <Net> description
gapi::onnx::detail::ParamDesc params;
// Input/output tensor information
std::vector<TensorInfo> getTensorInfo(TensorPosition pos);
// Run-time data structures
std::vector<cv::Mat> in_data;
std::vector<cv::Mat> out_data;
void Run(const std::vector<cv::Mat>& ins,
const std::vector<cv::Mat>& outs);
std::vector<std::string> in_names_without_const;
public:
explicit ONNXCompiled(const gapi::onnx::detail::ParamDesc &pp);
// Extract the information about output layer #i
cv::GMatDesc outMeta(int i) const;
// Assign input/output info
std::size_t numInputs() const { return params.num_in; }
std::size_t numOutputs() const { return params.num_out; }
void setInput(int i, const cv::Mat &m);
void setOutput(int idx, cv::Mat &m);
cv::Mat allocOutput(int i) const;
// Gets exMat from input
void extractMat(ONNXCallContext &ctx, const size_t in_idx, Views &views);
// Extracted cv::Mat from input cv::Mat/cv::MediaFrame
cv::Mat exMat;
// Run with the assigned inputs/outputs
void run();
};
} // namespace onnx
} // namespace gimpl
} // namespace cv
namespace {
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
std::vector<const char*> out_vec;
for (const auto& el : names) {
out_vec.push_back(el.data());
}
return out_vec;
}
inline int getIdxByName(const std::vector<cv::gimpl::onnx::TensorInfo>& info, const std::string& name) {
// FIXME: Cache the ordering
const auto it = ade::util::find_if(info, [&](const cv::gimpl::onnx::TensorInfo &i) {
return i.name == name;
});
GAPI_Assert(it != info.end());
return std::distance(info.begin(), it);
}
inline int toCV(ONNXTensorElementDataType prec) {
switch (prec) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
default: GAPI_Assert(false && "ONNX. Unsupported data type");
}
return -1;
}
inline std::vector<int> toCV(const std::vector<int64_t> &vsz) {
std::vector<int> result;
result.reserve(vsz.size());
for (auto sz : vsz) {
result.push_back(ade::util::checked_cast<int>(sz));
}
return result;
}
inline void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
const auto info = v.GetTensorTypeAndShapeInfo();
const auto prec = info.GetElementType();
const auto shape = toCV(info.GetShape());
mat.create(shape, toCV(prec));
switch (prec) {
#define HANDLE(E,T) \
case E: std::copy_n(v.GetTensorMutableData<T>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
#undef HANDLE
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
GAPI_LOG_WARNING(NULL, "INT64 isn't supported for cv::Mat. Conversion to INT32 is used.");
cv::gimpl::convertInt64ToInt32(v.GetTensorMutableData<int64_t>(),
reinterpret_cast<int*>(mat.data),
mat.total());
break;
}
default: GAPI_Assert(false && "ONNX. Unsupported data type");
}
}
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
return cv::to_own<int64_t>(sz);
}
inline void preprocess(const cv::Mat& src,
const cv::gimpl::onnx::TensorInfo& ti,
cv::Mat& dst) {
GAPI_Assert(src.depth() == CV_32F || src.depth() == CV_8U);
// CNN input type
const auto type = toCV(ti.type);
if (src.depth() == CV_32F) {
// Just pass the tensor as-is.
// No layout or dimension transformations done here!
// TODO: This needs to be aligned across all NN backends.
GAPI_Assert(type == CV_32F && "Only 32F model input is supported for 32F input data");
const auto tensor_dims = toORT(src.size);
if (tensor_dims.size() == ti.dims.size()) {
for (size_t i = 0; i < ti.dims.size(); ++i) {
GAPI_Assert((ti.dims[i] == -1 || ti.dims[i] == tensor_dims[i]) &&
"32F tensor dimensions should match with all non-dynamic NN input dimensions");
}
} else {
GAPI_Assert(false && "32F tensor size should match with NN input");
}
dst = src;
} else {
// 8U input: full preprocessing path
GAPI_Assert(src.depth() == CV_8U && "Only 8U data type is supported for preproc");
GAPI_Assert((ti.dims.size() == 4u || ti.dims.size() == 3u)
&& "Only NCHW/NHWC/CHW/HWC layouts are supported for preproc");
const bool with_batch = ti.dims.size() == 4u ? true : false;
const int shift = with_batch ? 0 : 1;
GAPI_Assert((type == CV_8U || type == CV_32F)
&& "Only 8U and 32F model input is supported for 8U input data");
// Assess the expected input layout
const bool is_hwc = [&](int ch) {
if (ti.is_grayscale) return false; // 1,1,h,w
else if (ti.dims[3 - shift] == ch) return true; // ?,_,_,c
else if (ti.dims[1 - shift] == ch) return false; // ?,c,_,_
else cv::util::throw_error(std::logic_error("Couldn't identify input tensor layout"));
} (src.channels());
int new_c = src.channels();
cv::Mat csc;
if (ti.is_grayscale && new_c == 3) {
cv::cvtColor(src, csc, cv::COLOR_BGR2GRAY);
new_c = 1;
} else {
csc = src;
}
// NHWC vs NCHW
int new_h = -1, new_w = -1;
if (ti.is_dynamic) {
// reuse h & w from the input image
new_h = src.rows;
new_w = src.cols;
} else {
// take h & w from the ONNX tensor info
new_h = ti.dims[(is_hwc ? 1 : 2) - shift];
new_w = ti.dims[(is_hwc ? 2 : 3) - shift];
}
GAPI_Assert(new_h != -1 && new_w != -1);
cv::Mat rsz, pp;
cv::resize(csc, rsz, cv::Size(new_w, new_h));
if (src.depth() == CV_8U && type == CV_32F) {
rsz.convertTo(pp, type, ti.normalize ? 1.f / 255 : 1.f);
if (ti.mstd.has_value()) {
pp -= ti.mstd->mean;
pp /= ti.mstd->stdev;
}
} else {
pp = rsz;
}
if (!is_hwc && new_c > 1) {
// Convert to CHW
dst.create(cv::Size(new_w, new_h * new_c), type);
std::vector<cv::Mat> planes(new_c);
for (int ch = 0; ch < new_c; ++ch) {
planes[ch] = dst.rowRange(ch * new_h, (ch + 1) * new_h);
}
cv::split(pp, planes);
} else {
// Keep HWC
dst = pp;
}
// Ensure dst is a tensor shape (not a 2D image)
if (ti.is_dynamic) {
// Reshape to input dimensions
const std::vector<int> out_dims = is_hwc
? with_batch
? std::vector<int>{1, new_h, new_w, new_c}
: std::vector<int>{new_h, new_w, new_c}
: with_batch
? std::vector<int>{1, new_c, new_h, new_w}
: std::vector<int>{new_c, new_h, new_w};
dst = dst.reshape(1, out_dims);
} else {
// Reshape to ONNX dimensions (no -1s there!)
dst = dst.reshape(1, toCV(ti.dims));
}
}
}
void preprocess(const cv::MediaFrame::View& view,
const cv::GFrameDesc& desc,
cv::Mat& dst) {
// This overload constructs cv::Mat from cv::MediaFrame
switch (desc.fmt) {
case cv::MediaFormat::BGR: {
dst = cv::Mat(desc.size, CV_8UC3, view.ptr[0], view.stride[0]);
break;
}
case cv::MediaFormat::NV12: {
const auto y_plane = cv::Mat(desc.size, CV_8UC1, view.ptr[0], view.stride[0]);
const auto uv_plane = cv::Mat(desc.size / 2, CV_8UC2, view.ptr[1], view.stride[1]);
cvtColorTwoPlane(y_plane, uv_plane, dst, cv::COLOR_YUV2BGR_NV12);
break;
}
default:
GAPI_Assert(false && "Unsupported media format for ONNX backend");
}
}
template <typename T>
inline Ort::Value createTensor(const Ort::MemoryInfo& memory_info,
const cv::gimpl::onnx::TensorInfo& tensor_params,
const cv::Mat& data) {
(void) tensor_params;
auto ort_dims = toORT(data.size);
return Ort::Value::CreateTensor<T>(memory_info,
const_cast<T*>(data.ptr<T>()),
data.total(),
ort_dims.data(),
ort_dims.size());
}
inline Ort::Value createTensor(const Ort::MemoryInfo& memory_info,
const cv::gimpl::onnx::TensorInfo& tensor_params,
const cv::Mat& data) {
GAPI_Assert(data.isContinuous ());
switch (tensor_params.type) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:
return createTensor<uint8_t>(memory_info, tensor_params, data);
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:
return createTensor<float>(memory_info, tensor_params, data);
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
return createTensor<int32_t>(memory_info, tensor_params, data);
default:
GAPI_Assert(false && "ONNX. Unsupported data type");
}
return Ort::Value{nullptr};
}
struct ONNXUnit {
static const char *name() { return "ONNXModelConfig"; }
std::shared_ptr<cv::gimpl::onnx::ONNXCompiled> oc;
explicit ONNXUnit(const cv::gapi::onnx::detail::ParamDesc &pp)
: oc(new cv::gimpl::onnx::ONNXCompiled(pp)) {
}
};
struct ONNXCallContext {
// Input parameters passed to an inference operation.
std::vector<cv::GArg> args;
cv::GShapes in_shapes;
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
//FIXME: check if the above applies to this backend (taken from CPU)
std::unordered_map<std::size_t, cv::GRunArgP> results;
// Generic accessor API
template<typename T>
const T& inArg(std::size_t input) { return args.at(input).get<T>(); }
// Syntax sugar
const cv::Mat& inMat(std::size_t input) {
return inArg<cv::Mat>(input);
}
const cv::MediaFrame& inFrame(std::size_t input) {
return inArg<cv::MediaFrame>(input);
}
cv::Mat& outMatR(std::size_t output) {
return *cv::util::get<cv::Mat*>(results.at(output));
}
template<typename T> std::vector<T>& outVecR(std::size_t output) { // FIXME: the same issue
return outVecRef(output).wref<T>();
}
cv::detail::VectorRef& outVecRef(std::size_t output) {
return cv::util::get<cv::detail::VectorRef>(results.at(output));
}
};
struct ONNXCallable {
static const char *name() { return "ONNXRequestCallable"; }
using Run = std::function<void(const ONNXUnit &, ONNXCallContext &)>;
Run run;
};
struct KImpl {
cv::gimpl::CustomMetaFunction::CM customMetaFunc;
ONNXCallable::Run run;
};
// FIXME: Is there a way to take a typed graph (our GModel),
// and create a new typed graph _ATOP_ of that (by extending with a couple of
// new types?).
// Alternatively, is there a way to compose types graphs?
//
// If not, we need to introduce that!
using GONNXModel = ade::TypedGraph
< cv::gimpl::Protocol
, cv::gimpl::Op
, cv::gimpl::NetworkParams
, cv::gimpl::CustomMetaFunction
, ONNXUnit
, ONNXCallable
>;
// FIXME: Same issue with Typed and ConstTyped
using GConstGONNXModel = ade::ConstTypedGraph
< cv::gimpl::Protocol
, cv::gimpl::Op
, cv::gimpl::NetworkParams
, cv::gimpl::CustomMetaFunction
, ONNXUnit
, ONNXCallable
>;
} // anonymous namespace
// GCPUExcecutable implementation //////////////////////////////////////////////
cv::gimpl::onnx::GONNXExecutable::GONNXExecutable(const ade::Graph &g,
const std::vector<ade::NodeHandle> &nodes)
: m_g(g), m_gm(m_g) {
// FIXME: Currently this backend is capable to run a single inference node only.
// Need to extend our island fusion with merge/not-to-merge decision making parametrization
GConstGONNXModel iem(g);
for (auto &nh : nodes) {
switch (m_gm.metadata(nh).get<NodeType>().t) {
case NodeType::OP:
if (this_nh == nullptr) {
this_nh = nh;
}
else {
util::throw_error(std::logic_error("Multi-node inference is not supported!"));
}
break;
case NodeType::DATA: {
m_dataNodes.push_back(nh);
const auto &desc = m_gm.metadata(nh).get<Data>();
if (desc.storage == Data::Storage::CONST_VAL) {
util::throw_error(std::logic_error("No const data supported in backend!"));
}
if (desc.storage == Data::Storage::INTERNAL) {
util::throw_error(std::logic_error("No internal data supported in backend!"));
}
break;
}
default: util::throw_error(std::logic_error("Unsupported NodeType"));
}
}
}
// FIXME: Document what it does
cv::GArg cv::gimpl::onnx::GONNXExecutable::packArg(const cv::GArg &arg) {
// No API placeholders allowed at this point
// FIXME: this check has to be done somewhere in compilation stage.
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
&& arg.kind != cv::detail::ArgKind::GSCALAR
&& arg.kind != cv::detail::ArgKind::GARRAY
&& arg.kind != cv::detail::ArgKind::GOPAQUE
&& arg.kind != cv::detail::ArgKind::GFRAME);
if (arg.kind != cv::detail::ArgKind::GOBJREF) {
util::throw_error(std::logic_error("Inference supports G-types ONLY!"));
}
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
// Wrap associated CPU object (either host or an internal one)
// FIXME: object can be moved out!!! GExecutor faced that.
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
switch (ref.shape)
{
case GShape::GMAT: return GArg(m_res.slot<cv::Mat>()[ref.id]);
// Note: .at() is intentional for GArray as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case GShape::GARRAY: return GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
// Note: .at() is intentional for GOpaque as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case GShape::GOPAQUE: return GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
case GShape::GFRAME: return GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
default:
util::throw_error(std::logic_error("Unsupported GShape type"));
break;
}
}
void cv::gimpl::onnx::GONNXExecutable::run(std::vector<InObj> &&input_objs,
std::vector<OutObj> &&output_objs) {
// Update resources with run-time information - what this Island
// has received from user (or from another Island, or mix...)
// FIXME: Check input/output objects against GIsland protocol
for (auto& it : input_objs) magazine::bindInArg (m_res, it.first, it.second);
for (auto& it : output_objs) magazine::bindOutArg(m_res, it.first, it.second);
// FIXME: Running just a single node now.
// Not sure if need to support many of them, though
// FIXME: Make this island-unmergeable?
const auto &op = m_gm.metadata(this_nh).get<Op>();
// Initialize kernel's execution context:
// - Input parameters
ONNXCallContext context;
context.args.reserve(op.args.size());
using namespace std::placeholders;
ade::util::transform(op.args,
std::back_inserter(context.args),
std::bind(&GONNXExecutable::packArg, this, _1));
// NB: Need to store inputs shape to recognize GFrame/GMat
context.in_shapes.reserve(op.args.size());
ade::util::transform(op.args,
std::back_inserter(context.in_shapes),
[](const cv::GArg& arg) {
return arg.get<cv::gimpl::RcDesc>().shape;
});
// - Output parameters.
for (const auto &out_it : ade::util::indexed(op.outs)) {
// FIXME: Can the same GArg type resolution mechanism be reused here?
const auto out_port = ade::util::index(out_it);
const auto out_desc = ade::util::value(out_it);
context.results[out_port] = magazine::getObjPtr(m_res, out_desc);
}
// And now trigger the execution
GConstGONNXModel giem(m_g);
const auto &uu = giem.metadata(this_nh).get<ONNXUnit>();
const auto &kk = giem.metadata(this_nh).get<ONNXCallable>();
kk.run(uu, context);
for (auto &it : output_objs) magazine::writeBack(m_res, it.first, it.second);
}
namespace cv {
namespace gimpl {
namespace onnx {
ONNXCompiled::ONNXCompiled(const gapi::onnx::detail::ParamDesc &pp)
: params(pp) {
// Validate input parameters before allocating any resources
if (params.num_in > 1u && params.num_in != params.input_names.size()) {
cv::util::throw_error(std::logic_error("Please specify input layer names for "
+ params.model_path));
}
if (params.num_out > 1u && params.num_out != params.output_names.size()) {
cv::util::throw_error(std::logic_error("Please specify output layer names for "
+ params.model_path));
}
// Create and initialize the ONNX session
Ort::SessionOptions session_options;
this_env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "");
#ifndef _WIN32
this_session = Ort::Session(this_env, params.model_path.data(), session_options);
#else
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
std::wstring w_model_path = converter.from_bytes(params.model_path.data());
this_session = Ort::Session(this_env, w_model_path.data(), session_options);
#endif
this_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
in_tensor_info = getTensorInfo(INPUT);
out_tensor_info = getTensorInfo(OUTPUT);
const auto is_dyn = [](const TensorInfo &ti) {
return ti.is_dynamic;
};
is_dynamic = ade::util::any_of(in_tensor_info, is_dyn)
|| ade::util::any_of(out_tensor_info, is_dyn);
if (is_dynamic && !params.custom_post_proc) {
util::throw_error(std::logic_error("This network has dynamic shapes. "
"Please provide a custom post-processing function "
"(.cfgPostProc) in network parameters"));
}
is_postproc = (params.custom_post_proc != nullptr);
// Update parameters based on session information
if (params.num_in == 1u && params.input_names.empty()) {
params.input_names = { in_tensor_info.front().name };
}
if (params.num_out == 1u && params.output_names.empty()) {
params.output_names = { out_tensor_info.front().name };
}
// Validate what is supported currently
GAPI_Assert(std::all_of(in_tensor_info.begin(),
in_tensor_info.end(),
[](const cv::gimpl::onnx::TensorInfo &p) {
return p.type == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT
|| p.type == ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8;
})
&& "Only FP32 and U8 inputs for NN are supported");
// Put mean and std in appropriate tensor params
if (!params.mean.empty() || !params.stdev.empty()) {
GAPI_Assert(params.mean.size() == params.stdev.size() &&
params.mean.size() == params.input_names.size());
for (auto idx : ade::util::iota(params.num_in)) {
const auto ort_idx = getIdxByName(in_tensor_info, params.input_names[idx]);
using M = TensorInfo::MeanStdev;
in_tensor_info[ort_idx].mstd = util::make_optional(M{ params.mean[idx]
, params.stdev[idx] });
}
}
// Update normalize flags for input tensors
if (!params.normalize.empty()) {
for (auto idx : ade::util::iota(params.num_in)) {
const auto ort_idx = getIdxByName(in_tensor_info, params.input_names[idx]);
in_tensor_info[ort_idx].normalize = params.normalize[idx];
}
}
if (!params.const_inputs.empty()) {
// Form input names order without const input names
in_names_without_const.clear();
std::copy_if(params.input_names.begin(), params.input_names.end(),
std::back_inserter(in_names_without_const),
[&](const std::string& name) {
const auto it = params.const_inputs.find(name);
return it == params.const_inputs.end();
});
}
// Pre-allocate vectors (not buffers) for runtime info
in_data.resize(params.num_in);
out_data.resize(params.num_out);
}
std::vector<TensorInfo> ONNXCompiled::getTensorInfo(TensorPosition pos) {
GAPI_Assert(pos == INPUT || pos == OUTPUT);
const auto num_nodes = pos == INPUT
? this_session.GetInputCount()
: this_session.GetOutputCount();
std::vector<TensorInfo> tensor_info;
tensor_info.reserve(num_nodes);
Ort::AllocatorWithDefaultOptions allocator;
for (auto i : ade::util::iota(num_nodes)) {
const auto info = pos == INPUT
? this_session.GetInputTypeInfo(i)
: this_session.GetOutputTypeInfo(i);
tensor_info.emplace_back(info.GetTensorTypeAndShapeInfo());
char *name_p = pos == INPUT
? this_session.GetInputName(i, allocator)
: this_session.GetOutputName(i, allocator);
tensor_info.back().name = name_p;
allocator.Free(name_p);
}
return tensor_info;
}
cv::GMatDesc ONNXCompiled::outMeta(int idx) const {
if (is_dynamic || is_postproc) {
GAPI_Assert(!params.out_metas.empty()
&& "Metadata must be specified if NN has dynamic inputs or post-processing function is used!");
return params.out_metas.at(idx);
}
const auto ort_idx = getIdxByName(out_tensor_info, params.output_names[idx]);
return cv::GMatDesc(toCV(out_tensor_info[ort_idx].type),
toCV(out_tensor_info[ort_idx].dims));
}
void ONNXCompiled::setInput(int in_idx, const cv::Mat &m) {
GAPI_Assert(!m.empty() && "Input data can't be empty!");
const auto in_name = params.input_names[in_idx];
const auto ort_idx = getIdxByName(in_tensor_info, in_name);
preprocess(m, in_tensor_info[ort_idx], in_data[in_idx]);
}
void ONNXCompiled::extractMat(ONNXCallContext &ctx, const size_t in_idx, Views& views) {
switch (ctx.in_shapes[in_idx]) {
case cv::GShape::GFRAME: {
const cv::MediaFrame& frame = ctx.inFrame(in_idx);
views.emplace_back(new cv::MediaFrame::View(frame.access(cv::MediaFrame::Access::R)));
GAPI_Assert(views.size() <= numInputs());
preprocess(*views.back(), frame.desc(), exMat);
break;
}
case cv::GShape::GMAT: {
exMat = ctx.inMat(in_idx);
break;
}
default: {
GAPI_Assert("Unsupported input shape for ONNX backend");
}
}
}
void ONNXCompiled::setOutput(int i, cv::Mat &m) {
// FIXME: No need in double-indexing?
out_data[i] = m;
}
cv::Mat ONNXCompiled::allocOutput(int i) const {
cv::Mat m;
m.create(toCV(out_tensor_info[i].dims),
toCV(out_tensor_info[i].type));
return m;
}
void ONNXCompiled::Run(const std::vector<cv::Mat>& ins,
const std::vector<cv::Mat>& outs) {
std::vector<Ort::Value> in_tensors, out_tensors;
// Layer names order for run
auto input_names = (in_names_without_const.empty() && params.const_inputs.empty())
? params.input_names
: in_names_without_const;
// Creates tensors for unique names that don't contain constant input
for (const auto it : ade::util::indexed(input_names)) {
auto i = ade::util::index(it);
auto in_name = ade::util::value(it);
const auto idx = getIdxByName(in_tensor_info, in_name);
in_tensors.emplace_back(createTensor(this_memory_info,
in_tensor_info[idx],
ins[i]));
}
for (auto &&c_in_pair : params.const_inputs) {
const auto idx = getIdxByName(in_tensor_info, c_in_pair.first);
in_tensors.emplace_back(createTensor(this_memory_info,
in_tensor_info[idx],
c_in_pair.second.first));
// Puts const input names in sequence for Run
// ONNXRuntime can match input tensors to CNN inputs by names
input_names.emplace_back(c_in_pair.first);
}
GAPI_Assert(input_names.size() == this_session.GetInputCount());
auto in_run_names = getCharNames(input_names);
if (!is_dynamic && !is_postproc) {
// Easy path - just run the session which is bound to G-API's
// internal data
for (auto i : ade::util::iota(params.output_names.size())) {
out_tensors.emplace_back(createTensor(this_memory_info,
out_tensor_info[i],
outs[i]));
}
auto out_run_names = getCharNames(params.output_names);
this_session.Run(Ort::RunOptions{nullptr},
in_run_names.data(),
&in_tensors.front(),
input_names.size(),
out_run_names.data(),
&out_tensors.front(),
params.output_names.size());
} else {
// Hard path - run session & user-defined post-processing
// NOTE: use another list of output names here
std::vector<const char*> out_names;
out_names.reserve(outs.size());
params.names_to_remap.empty()
? ade::util::transform(out_tensor_info, std::back_inserter(out_names),
[] (const TensorInfo& ti) { return ti.name.c_str(); })
: ade::util::transform(params.names_to_remap, std::back_inserter(out_names),
[] (const std::string& ntr) { return ntr.c_str(); });
auto outputs = this_session.Run(Ort::RunOptions{nullptr},
in_run_names.data(),
&in_tensors.front(),
input_names.size(),
out_names.data(),
out_names.size());
std::unordered_map<std::string, cv::Mat> onnx_outputs;
std::unordered_map<std::string, cv::Mat> gapi_outputs;
GAPI_Assert(outputs.size() == out_names.size());
// Fill in ONNX tensors
for (auto &&iter : ade::util::zip(ade::util::toRange(out_names),
ade::util::toRange(outputs))) {
const auto &out_name = std::get<0>(iter);
auto &out_tensor = std::get<1>(iter);
copyFromONNX(out_tensor, onnx_outputs[out_name]);
}
std::vector<uint8_t *> tracked_mat_ptrs;
// Fill in G-API outputs
for (auto &&it: ade::util::indexed(params.output_names)) {
gapi_outputs[ade::util::value(it)] = outs[ade::util::index(it)];
tracked_mat_ptrs.push_back(outs[ade::util::index(it)].data);
}
params.custom_post_proc(onnx_outputs, gapi_outputs);
// Checking for possible data reallocation after remapping
GAPI_Assert(tracked_mat_ptrs.size() == params.output_names.size());
for (auto &&iter : ade::util::zip(ade::util::toRange(tracked_mat_ptrs),
ade::util::toRange(params.output_names))) {
const auto &original_data = std::get<0>(iter);
const auto &received_data = gapi_outputs.at(std::get<1>(iter)).data;
if (original_data != received_data) {
cv::util::throw_error
(std::logic_error
("OpenCV kernel output parameter was reallocated after remapping of ONNX output. \n"
"Incorrect logic in remapping function?"));
}
}
}
}
void ONNXCompiled::run() {
Run(in_data, out_data);
}
static void checkInputMeta(const cv::GMetaArg mm) {
switch (mm.index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>(): break;
case cv::GMetaArg::index_of<cv::GFrameDesc>(): {
const auto &meta = util::get<cv::GFrameDesc>(mm);
switch (meta.fmt) {
case cv::MediaFormat::NV12: break;
case cv::MediaFormat::BGR: break;
default:
GAPI_Assert(false && "Unsupported media format for ONNX backend");
} break;
} break;
default:
util::throw_error(std::runtime_error("Unsupported input meta for ONNX backend"));
}
}
struct Infer: public cv::detail::KernelTag {
using API = cv::GInferBase;
static cv::gapi::GBackend backend() { return cv::gapi::onnx::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
cv::GMetaArgs result;
GConstGONNXModel gm(gr);
const auto &uu = gm.metadata(nh).get<ONNXUnit>();
GAPI_Assert(uu.oc->numInputs() == in_metas.size()
&& "Known input layers count doesn't match input meta count");
for (auto &&mm : in_metas) {
checkInputMeta(mm);
}
for (auto &&idx : ade::util::iota(uu.oc->numOutputs())) {
result.emplace_back(uu.oc->outMeta(idx));
}
return result;
}
static void run(const ONNXUnit &uu, ONNXCallContext &ctx) {
Views views;
for (auto &&idx : ade::util::iota(uu.oc->numInputs())) {
uu.oc->extractMat(ctx, idx, views);
uu.oc->setInput(idx, uu.oc->exMat);
}
for (auto &&idx : ade::util::iota(uu.oc->numOutputs())) {
uu.oc->setOutput(idx, ctx.outMatR(idx));
}
uu.oc->run();
}
};
struct InferROI: public cv::detail::KernelTag {
using API = cv::GInferROIBase;
static cv::gapi::GBackend backend() { return cv::gapi::onnx::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
cv::GMetaArgs result;
GConstGONNXModel gm(gr);
const auto &uu = gm.metadata(nh).get<ONNXUnit>();
GAPI_Assert(1u == uu.oc->numInputs());
GAPI_Assert(2u == in_metas.size());
checkInputMeta(in_metas.at(1));
for (auto &&idx : ade::util::iota(uu.oc->numOutputs())) {
result.emplace_back(uu.oc->outMeta(idx));
}
return result;
}
static void run(const ONNXUnit &uu, ONNXCallContext &ctx) {
Views views;
// non-generic version for now, per the InferROI's definition
GAPI_Assert(uu.oc->numInputs() == 1u);
const auto& this_roi = ctx.inArg<cv::detail::OpaqueRef>(0).rref<cv::Rect>();
uu.oc->extractMat(ctx, 1, views);
uu.oc->setInput(0, uu.oc->exMat(this_roi));
for (auto &&idx : ade::util::iota(uu.oc->numOutputs())) {
uu.oc->setOutput(idx, ctx.outMatR(idx));
}
uu.oc->run();
}
};
struct InferList: public cv::detail::KernelTag {
using API = cv::GInferListBase;
static cv::gapi::GBackend backend() { return cv::gapi::onnx::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
GConstGONNXModel gm(gr);
const auto &uu = gm.metadata(nh).get<ONNXUnit>();
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.oc->numInputs() == (in_metas.size() - 1u)
&& "Known input layers count doesn't match input meta count");
for (auto i : ade::util::iota(uu.oc->numInputs())) {
const auto &mm = in_metas[i + 1];
checkInputMeta(mm);
}
// roi-list version is much easier at the moment.
// All our outputs are vectors which don't have
// metadata at the moment - so just create a vector of
// "empty" array metadatas of the required size.
return cv::GMetaArgs(uu.oc->numOutputs(),
cv::GMetaArg{cv::empty_array_desc()});
}
static void run(const ONNXUnit &uu, ONNXCallContext &ctx) {
Views views;
// non-generic version for now:
// - assumes input 0 is always ROI list
// - assumes all inputs/outputs are always Mats
GAPI_Assert(uu.oc->numInputs() == 1); // roi list is not counted in net's inputs
const auto& in_roi_vec = ctx.inArg<cv::detail::VectorRef>(0u).rref<cv::Rect>();
for (auto i : ade::util::iota(uu.oc->numOutputs())) {
ctx.outVecR<cv::Mat>(i).clear();
}
uu.oc->extractMat(ctx, 1, views);
for (const auto &rc : in_roi_vec) {
uu.oc->setInput(0, uu.oc->exMat(rc));
std::vector<cv::Mat> out_mats(uu.oc->numOutputs());
for (auto i : ade::util::iota(uu.oc->numOutputs())) {
out_mats[i] = uu.oc->allocOutput(i);
uu.oc->setOutput(i, out_mats[i]);
}
uu.oc->run();
for (auto i : ade::util::iota(uu.oc->numOutputs())) {
std::vector<cv::Mat> &out_vec = ctx.outVecR<cv::Mat>(i);
out_vec.push_back(std::move(out_mats[i]));
}
}
}
};
struct InferList2: public cv::detail::KernelTag {
using API = cv::GInferList2Base;
static cv::gapi::GBackend backend() { return cv::gapi::onnx::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
GConstGONNXModel gm(gr);
const auto &uu = gm.metadata(nh).get<ONNXUnit>();
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.oc->numInputs() == (in_metas.size() - 1u)
&& "Known input layers count doesn't match input meta count");
// In contrast to InferList, the InferList2 has only one
// "full-frame" image argument, and all the rest are arrays of
// ether ROI or blobs. So here we set the 0th arg image format
// to all inputs which are ROI-based (skipping the
// "blob"-based ones)
// FIXME: this is filtering not done, actually! GArrayDesc has
// no hint for type!
const auto &mm_0 = in_metas[0u];
switch (in_metas[0u].index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>(): {
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
GAPI_Assert( !meta_0.isND()
&& !meta_0.planar
&& "Only images are supported as the 0th argument");
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>(): {
const auto &meta_0 = util::get<cv::GFrameDesc>(mm_0);
GAPI_Assert( (meta_0.fmt == cv::MediaFormat::BGR)
|| (meta_0.fmt == cv::MediaFormat::NV12));
GAPI_Assert((meta_0.size.height !=0) && (meta_0.size.width !=0));
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for ONNX backend"));
}
if (util::holds_alternative<cv::GMatDesc>(mm_0)) {
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
GAPI_Assert( !meta_0.isND()
&& !meta_0.planar
&& "Only images are supported as the 0th argument");
}
for (auto i : ade::util::iota(uu.oc->numInputs())) {
const auto &mm = in_metas[i + 1];
GAPI_Assert(util::holds_alternative<cv::GArrayDesc>(mm)
&& "Non-array inputs are not supported");
}
// roi-list version is much easier at the moment.
// All our outputs are vectors which don't have
// metadata at the moment - so just create a vector of
// "empty" array metadatas of the required size.
return cv::GMetaArgs(uu.oc->numOutputs(),
cv::GMetaArg{cv::empty_array_desc()});
}
static void run(const ONNXUnit &uu, ONNXCallContext &ctx) {
Views views;
GAPI_Assert(ctx.args.size() > 1u
&& "This operation must have at least two arguments");
uu.oc->extractMat(ctx, 0, views);
// Since we do a ROI list inference, always assume our input buffer is image
// Take the next argument, which must be vector (of any kind).
// Use this only to obtain the ROI list size (sizes of all
// other vectors must be equal to this one)
const auto list_size = ctx.inArg<cv::detail::VectorRef>(1u).size();
for (auto i : ade::util::iota(uu.oc->numOutputs())) {
ctx.outVecR<cv::Mat>(i).clear();
}
// For every ROI in the list {{{
for (const auto &list_idx : ade::util::iota(list_size)) {
std::vector<Ort::Value> in_tensors, out_tensors;
std::vector<cv::Mat> in_mats(uu.oc->numInputs());
// For every input of the net {{{
for (auto in_idx : ade::util::iota(uu.oc->numInputs())) {
const auto &this_vec = ctx.inArg<cv::detail::VectorRef>(in_idx+1u);
GAPI_Assert(this_vec.size() == list_size);
// Prepare input {{{
// FIXME: Terrible run-time logic based on RTTI!
// FIXME: Will never work on non-RTTI systems!
// FIXME: Need to replace with a static type tags
// (like with serialization) instead!
if (this_vec.holds<cv::Rect>()) {
// ROI case - create an ROI blob
const auto &vec = this_vec.rref<cv::Rect>();
uu.oc->setInput(in_idx, uu.oc->exMat(vec[list_idx]));
} else if (this_vec.holds<cv::Mat>()) {
// Mat case - create a regular blob
// FIXME: NOW Assume Mats are always BLOBS (not
// images)
const auto &vec = this_vec.rref<cv::Mat>();
uu.oc->setInput(in_idx, vec[list_idx]);
} else {
GAPI_Assert(false && "Only Rect and Mat types are supported for infer list 2!");
}
// }}} (Preapre input)
} // }}} (For every input of the net)
std::vector<cv::Mat> out_mats(uu.oc->numOutputs());
for (auto i : ade::util::iota(uu.oc->numOutputs())) {
out_mats[i] = uu.oc->allocOutput(i);
uu.oc->setOutput(i, out_mats[i]);
}
uu.oc->run();
for (auto i : ade::util::iota(uu.oc->numOutputs())) {
std::vector<cv::Mat> &out_vec = ctx.outVecR<cv::Mat>(i);
out_vec.push_back(std::move(out_mats[i]));
}
} // }}} (For every ROI in the list)
}
};
} // namespace onnx
} // namespace gapi
} // namespace cv
namespace {
class GONNXBackendImpl final: public cv::gapi::GBackend::Priv {
virtual void unpackKernel(ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GKernelImpl &ii) override {
using namespace cv::gimpl;
// FIXME: Introduce a DNNBackend interface which'd specify
// the framework for this???
GONNXModel gm(gr);
const auto &np = gm.metadata(nh).get<NetworkParams>();
const auto &pp = cv::util::any_cast<cv::gapi::onnx::detail::ParamDesc>(np.opaque);
const auto &ki = cv::util::any_cast<KImpl>(ii.opaque);
gm.metadata(nh).set(ONNXUnit{pp});
gm.metadata(nh).set(ONNXCallable{ki.run});
gm.metadata(nh).set(CustomMetaFunction{ki.customMetaFunc});
}
virtual EPtr compile(const ade::Graph &graph,
const cv::GCompileArgs &,
const std::vector<ade::NodeHandle> &nodes) const override {
return EPtr{new cv::gimpl::onnx::GONNXExecutable(graph, nodes)};
}
virtual cv::gapi::GKernelPackage auxiliaryKernels() const override {
return cv::gapi::kernels< cv::gimpl::onnx::Infer
, cv::gimpl::onnx::InferROI
, cv::gimpl::onnx::InferList
, cv::gimpl::onnx::InferList2
>();
}
};
}
cv::gapi::GBackend cv::gapi::onnx::backend() {
static cv::gapi::GBackend this_backend(std::make_shared<GONNXBackendImpl>());
return this_backend;
}
#else // HAVE_ONNX
cv::gapi::GBackend cv::gapi::onnx::backend() {
// Still provide this symbol to avoid linking issues
util::throw_error(std::runtime_error("G-API has been compiled without ONNX support"));
}
#endif // HAVE_ONNX