intelligent_scissors.cpp
24.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
//#include "opencv2/imgproc/segmentation.hpp"
#include <opencv2/core/utils/logger.hpp>
#include <queue> // std::priority_queue
namespace cv {
namespace segmentation {
namespace {
// 0 1 2
// 3 x 4
// 5 6 7
static const int neighbors[8][2] = {
{ -1, -1 },
{ 0, -1 },
{ 1, -1 },
{ -1, 0 },
{ 1, 0 },
{ -1, 1 },
{ 0, 1 },
{ 1, 1 },
};
// encoded reverse direction
static const int neighbors_encode[8] = {
7+1, 6+1, 5+1,
4+1, 3+1,
2+1, 1+1, 0+1
};
#define ACOS_TABLE_SIZE 64
// acos_table[x + ACOS_TABLE_SIZE] = acos(x / ACOS_TABLE_SIZE) / CV_PI (see local_cost)
// x = [ -ACOS_TABLE_SIZE .. ACOS_TABLE_SIZE ]
float* getAcosTable()
{
constexpr int N = ACOS_TABLE_SIZE;
static bool initialized = false;
static float acos_table[2*N + 1] = { 0 };
if (!initialized)
{
const float CV_PI_inv = static_cast<float>(1.0 / CV_PI);
for (int i = -N; i <= N; i++)
{
acos_table[i + N] = acosf(i / (float)N) * CV_PI_inv;
}
initialized = true;
}
return acos_table;
}
} // namespace anon
struct IntelligentScissorsMB::Impl
{
// proposed weights from the article (sum = 1.0)
float weight_non_edge = 0.43f;
float weight_gradient_direction = 0.43f;
float weight_gradient_magnitude = 0.14f;
enum EdgeFeatureMode {
FEATURE_ZERO_CROSSING = 0,
FEATURE_CANNY
};
EdgeFeatureMode edge_mode = FEATURE_ZERO_CROSSING;
// FEATURE_ZERO_CROSSING
float edge_gradient_magnitude_min_value = 0.0f;
// FEATURE_CANNY
double edge_canny_threshold1 = 10;
double edge_canny_threshold2 = 100;
int edge_canny_apertureSize = 3;
bool edge_canny_L2gradient = false;
float gradient_magnitude_threshold_max = 0.0f; // disabled thresholding
int sobelKernelSize = 3; // 1 or 3
int laplacianKernelSize = 3; // 1 or 3
// image features
Mat_<Point2f> gradient_direction; //< I: normalized laplacian x/y components
Mat_<float> gradient_magnitude; //< Fg: gradient cost function
Mat_<uchar> non_edge_feature; //< Fz: zero-crossing function
float weight_non_edge_compute = 0.0f;
// encoded paths map (produced by `buildMap()`)
Mat_<uchar> optimalPathsMap;
void resetFeatures_()
{
CV_TRACE_FUNCTION();
gradient_direction.release();
gradient_magnitude.release();
non_edge_feature.release();
weight_non_edge_compute = weight_non_edge;
optimalPathsMap.release();
}
Size src_size;
Mat image_;
Mat grayscale_;
void initImage_(InputArray image)
{
CV_TRACE_FUNCTION();
if (!image_.empty())
return;
CV_CheckType(image.type(), image.type() == CV_8UC1 || image.type() == CV_8UC3 || image.type() == CV_8UC4, "");
src_size = image.size();
image_ = image.getMat();
}
void initGrayscale_(InputArray image)
{
CV_TRACE_FUNCTION();
if (!grayscale_.empty())
return;
CV_Assert(!image.empty());
CV_CheckType(image.type(), image.type() == CV_8UC1 || image.type() == CV_8UC3 || image.type() == CV_8UC4, "");
src_size = image.size();
if (image.channels() > 1)
cvtColor(image, grayscale_, COLOR_BGR2GRAY);
else
grayscale_ = image.getMat();
}
Mat Ix_, Iy_;
void initImageDerives_(InputArray image)
{
CV_TRACE_FUNCTION();
if (!Ix_.empty())
return;
initGrayscale_(image);
Sobel(grayscale_, Ix_, CV_32FC1, 1, 0, sobelKernelSize);
Sobel(grayscale_, Iy_, CV_32FC1, 0, 1, sobelKernelSize);
}
Mat image_magnitude_;
void initImageMagnitude_(InputArray image)
{
CV_TRACE_FUNCTION();
if (!image_magnitude_.empty())
return;
initImageDerives_(image);
magnitude(Ix_, Iy_, image_magnitude_);
}
void cleanupFeaturesTemporaryArrays_()
{
CV_TRACE_FUNCTION();
image_.release();
grayscale_.release();
Ix_.release();
Iy_.release();
image_magnitude_.release();
}
Impl()
{
// nothing
CV_TRACE_FUNCTION();
}
void setWeights(float weight_non_edge_, float weight_gradient_direction_, float weight_gradient_magnitude_)
{
CV_TRACE_FUNCTION();
CV_CheckGE(weight_non_edge_, 0.0f, "");
CV_CheckGE(weight_gradient_direction_, 0.0f, "");
CV_CheckGE(weight_gradient_magnitude_, 0.0f, "");
CV_CheckGE(weight_non_edge_ + weight_gradient_direction_ + weight_gradient_magnitude_, FLT_EPSILON, "Sum of weights must be greater than zero");
weight_non_edge = weight_non_edge_;
weight_gradient_direction = weight_gradient_direction_;
weight_gradient_magnitude = weight_gradient_magnitude_;
resetFeatures_();
}
void setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max_)
{
CV_TRACE_FUNCTION();
CV_CheckGE(gradient_magnitude_threshold_max_, 0.0f, "");
gradient_magnitude_threshold_max = gradient_magnitude_threshold_max_;
resetFeatures_();
}
void setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value_)
{
CV_TRACE_FUNCTION();
CV_CheckGE(gradient_magnitude_min_value_, 0.0f, "");
edge_mode = FEATURE_ZERO_CROSSING;
edge_gradient_magnitude_min_value = gradient_magnitude_min_value_;
resetFeatures_();
}
void setEdgeFeatureCannyParameters(
double threshold1, double threshold2,
int apertureSize = 3, bool L2gradient = false
)
{
CV_TRACE_FUNCTION();
CV_CheckGE(threshold1, 0.0, "");
CV_CheckGE(threshold2, 0.0, "");
edge_mode = FEATURE_CANNY;
edge_canny_threshold1 = threshold1;
edge_canny_threshold2 = threshold2;
edge_canny_apertureSize = apertureSize;
edge_canny_L2gradient = L2gradient;
resetFeatures_();
}
void applyImageFeatures(
InputArray non_edge, InputArray gradient_direction_, InputArray gradient_magnitude_,
InputArray image
)
{
CV_TRACE_FUNCTION();
resetFeatures_();
cleanupFeaturesTemporaryArrays_();
src_size = Size(0, 0);
if (!non_edge.empty())
src_size = non_edge.size();
if (!gradient_direction_.empty())
{
Size gradient_direction_size = gradient_direction_.size();
if (!src_size.empty())
CV_CheckEQ(src_size, gradient_direction_size, "");
else
src_size = gradient_direction_size;
}
if (!gradient_magnitude_.empty())
{
Size gradient_magnitude_size = gradient_magnitude_.size();
if (!src_size.empty())
CV_CheckEQ(src_size, gradient_magnitude_size, "");
else
src_size = gradient_magnitude_size;
}
if (!image.empty())
{
Size image_size = image.size();
if (!src_size.empty())
CV_CheckEQ(src_size, image_size, "");
else
src_size = image_size;
}
// src_size must be filled
CV_Assert(!src_size.empty());
if (!non_edge.empty())
{
CV_CheckTypeEQ(non_edge.type(), CV_8UC1, "");
non_edge_feature = non_edge.getMat();
}
else
{
if (weight_non_edge == 0.0f)
{
non_edge_feature.create(src_size);
non_edge_feature.setTo(0);
}
else
{
if (image.empty())
CV_Error(Error::StsBadArg, "Non-edge feature parameter is missing. Input image parameter is required to extract this feature");
extractEdgeFeature_(image);
}
}
if (!gradient_direction_.empty())
{
CV_CheckTypeEQ(gradient_direction_.type(), CV_32FC2, "");
gradient_direction = gradient_direction_.getMat();
}
else
{
if (weight_gradient_direction == 0.0f)
{
gradient_direction.create(src_size);
gradient_direction.setTo(Scalar::all(0));
}
else
{
if (image.empty())
CV_Error(Error::StsBadArg, "Gradient direction feature parameter is missing. Input image parameter is required to extract this feature");
extractGradientDirection_(image);
}
}
if (!gradient_magnitude_.empty())
{
CV_CheckTypeEQ(gradient_magnitude_.type(), CV_32FC1, "");
gradient_magnitude = gradient_magnitude_.getMat();
}
else
{
if (weight_gradient_magnitude == 0.0f)
{
gradient_magnitude.create(src_size);
gradient_magnitude.setTo(Scalar::all(0));
}
else
{
if (image.empty())
CV_Error(Error::StsBadArg, "Gradient magnitude feature parameter is missing. Input image parameter is required to extract this feature");
extractGradientMagnitude_(image);
}
}
cleanupFeaturesTemporaryArrays_();
}
void extractEdgeFeature_(InputArray image)
{
CV_TRACE_FUNCTION();
if (edge_mode == FEATURE_CANNY)
{
CV_LOG_DEBUG(NULL, "Canny(" << edge_canny_threshold1 << ", " << edge_canny_threshold2 << ")");
Mat img_canny;
Canny(image, img_canny, edge_canny_threshold1, edge_canny_threshold2, edge_canny_apertureSize, edge_canny_L2gradient);
#if 0
threshold(img_canny, non_edge_feature, 254, 1, THRESH_BINARY_INV);
#else
// Canny result values are 0 or 255
bitwise_not(img_canny, non_edge_feature);
weight_non_edge_compute = weight_non_edge * (1.0f / 255.0f);
#endif
}
else // if (edge_mode == FEATURE_ZERO_CROSSING)
{
initGrayscale_(image);
Mat_<short> laplacian;
Laplacian(grayscale_, laplacian, CV_16S, laplacianKernelSize);
Mat_<uchar> zero_crossing(src_size, 1);
const size_t zstep = zero_crossing.step[0];
for (int y = 0; y < src_size.height - 1; y++)
{
const short* row0 = laplacian.ptr<short>(y);
const short* row1 = laplacian.ptr<short>(y + 1);
uchar* zrow0 = zero_crossing.ptr<uchar>(y);
//uchar* zrow1 = zero_crossing.ptr<uchar>(y + 1);
for (int x = 0; x < src_size.width - 1; x++)
{
const int v = row0[x];
const int neg_v = -v;
// - * 1
// 2 3 4
const int v1 = row0[x + 1];
const int v2 = (x > 0) ? row1[x - 1] : v;
const int v3 = row1[x + 0];
const int v4 = row1[x + 1];
if (v < 0)
{
if (v1 > 0)
{
zrow0[x + ((v1 < neg_v) ? 1 : 0)] = 0;
}
if (v2 > 0)
{
zrow0[x + ((v2 < neg_v) ? (zstep - 1) : 0)] = 0;
}
if (v3 > 0)
{
zrow0[x + ((v3 < neg_v) ? (zstep + 0) : 0)] = 0;
}
if (v4 > 0)
{
zrow0[x + ((v4 < neg_v) ? (zstep + 1) : 0)] = 0;
}
}
else
{
if (v1 < 0)
{
zrow0[x + ((v1 > neg_v) ? 1 : 0)] = 0;
}
if (v2 < 0)
{
zrow0[x + ((v2 > neg_v) ? (zstep - 1) : 0)] = 0;
}
if (v3 < 0)
{
zrow0[x + ((v3 > neg_v) ? (zstep + 0) : 0)] = 0;
}
if (v4 < 0)
{
zrow0[x + ((v4 > neg_v) ? (zstep + 1) : 0)] = 0;
}
}
}
}
if (edge_gradient_magnitude_min_value > 0)
{
initImageMagnitude_(image);
Mat mask = image_magnitude_ < edge_gradient_magnitude_min_value;
zero_crossing.setTo(1, mask); // reset low-amplitude noise
}
non_edge_feature = zero_crossing;
}
}
void extractGradientDirection_(InputArray image)
{
CV_TRACE_FUNCTION();
initImageMagnitude_(image); // calls internally: initImageDerives_(image);
gradient_direction.create(src_size);
for (int y = 0; y < src_size.height; y++)
{
const float* magnutude_row = image_magnitude_.ptr<float>(y);
const float* Ix_row = Ix_.ptr<float>(y);
const float* Iy_row = Iy_.ptr<float>(y);
Point2f* gradient_direction_row = gradient_direction.ptr<Point2f>(y);
for (int x = 0; x < src_size.width; x++)
{
const float m = magnutude_row[x];
if (m > FLT_EPSILON)
{
float m_inv = 1.0f / m;
gradient_direction_row[x] = Point2f(Ix_row[x] * m_inv, Iy_row[x] * m_inv);
}
else
{
gradient_direction_row[x] = Point2f(0, 0);
}
}
}
}
void extractGradientMagnitude_(InputArray image)
{
CV_TRACE_FUNCTION();
initImageMagnitude_(image); // calls internally: initImageDerives_(image);
Mat m;
double max_m = 0;
if (gradient_magnitude_threshold_max > 0)
{
threshold(image_magnitude_, m, gradient_magnitude_threshold_max, 0, THRESH_TRUNC);
max_m = gradient_magnitude_threshold_max;
}
else
{
m = image_magnitude_;
minMaxLoc(m, 0, &max_m);
}
if (max_m <= FLT_EPSILON)
{
CV_LOG_INFO(NULL, "IntelligentScissorsMB: input image gradient is almost zero")
gradient_magnitude.create(src_size);
gradient_magnitude.setTo(0);
}
else
{
m.convertTo(gradient_magnitude, CV_32F, -1.0 / max_m, 1.0); // normalize and inverse to range 0..1
}
}
void applyImage(InputArray image)
{
CV_TRACE_FUNCTION();
CV_CheckType(image.type(), image.type() == CV_8UC1 || image.type() == CV_8UC3 || image.type() == CV_8UC4, "");
resetFeatures_();
cleanupFeaturesTemporaryArrays_();
extractEdgeFeature_(image);
extractGradientDirection_(image);
extractGradientMagnitude_(image);
cleanupFeaturesTemporaryArrays_();
}
// details: see section 3.1 of the article
const float* acos_table = getAcosTable();
float local_cost(const Point& p, const Point& q) const
{
const bool isDiag = (p.x != q.x) && (p.y != q.y);
float fG = gradient_magnitude.at<float>(q);
const Point2f diff((float)(q.x - p.x), (float)(q.y - p.y));
const Point2f Ip = gradient_direction(p);
const Point2f Iq = gradient_direction(q);
const Point2f Dp(Ip.y, -Ip.x); // D(p) - 90 degrees clockwise
const Point2f Dq(Iq.y, -Iq.x); // D(q) - 90 degrees clockwise
float dp = Dp.dot(diff); // dp(p, q)
float dq = Dq.dot(diff); // dq(p, q)
if (dp < 0)
{
dp = -dp; // ensure dp >= 0
dq = -dq;
}
const float sqrt2_inv = 0.7071067811865475f; // 1.0 / sqrt(2)
if (isDiag)
{
dp *= sqrt2_inv; // normalize length of (q - p)
dq *= sqrt2_inv; // normalize length of (q - p)
}
else
{
fG *= sqrt2_inv;
}
#if 1
int dp_i = cvFloor(dp * ACOS_TABLE_SIZE); // dp is in range 0..1
dp_i = std::min(ACOS_TABLE_SIZE, std::max(0, dp_i));
int dq_i = cvFloor(dq * ACOS_TABLE_SIZE); // dq is in range -1..1
dq_i = std::min(ACOS_TABLE_SIZE, std::max(-ACOS_TABLE_SIZE, dq_i));
const float fD = acos_table[dp_i + ACOS_TABLE_SIZE] + acos_table[dq_i + ACOS_TABLE_SIZE];
#else
const float CV_PI_inv = static_cast<float>(1.0 / CV_PI);
const float fD = (acosf(dp) + acosf(dq)) * CV_PI_inv; // TODO optimize acos calls (through tables)
#endif
float cost =
weight_non_edge_compute * non_edge_feature.at<uchar>(q) +
weight_gradient_direction * fD +
weight_gradient_magnitude * fG;
return cost;
}
struct Pix
{
Point pt;
float cost; // NOTE: do not remove cost from here through replacing by cost(pt) map access
inline bool operator > (const Pix &b) const
{
return cost > b.cost;
}
};
void buildMap(const Point& start_point)
{
CV_TRACE_FUNCTION();
CV_Assert(!src_size.empty());
CV_Assert(!gradient_magnitude.empty() && "Features are missing. applyImage() must be called first");
CV_CheckGE(weight_non_edge + weight_gradient_direction + weight_gradient_magnitude, FLT_EPSILON, "");
#if 0 // debug
Rect wholeImage(0, 0, src_size.width, src_size.height);
Rect roi = Rect(start_point.x - 5, start_point.y - 5, 11, 11) & wholeImage;
std::cout << roi << std::endl;
std::cout << gradient_magnitude(roi) << std::endl;
std::cout << gradient_direction(roi) << std::endl;
std::cout << non_edge_feature(roi) << std::endl;
#endif
optimalPathsMap.release();
optimalPathsMap.create(src_size);
optimalPathsMap.setTo(0); // optimalPathsMap(start_point) = 0;
//
// Section 3.2
// Live-Wire 2-D DP graph search.
//
Mat_<float> cost_map(src_size, FLT_MAX); // g(q)
Mat_<uchar> processed(src_size, (uchar)0); // e(q)
// Note: std::vector is faster than std::deque
// TODO check std::set
std::priority_queue< Pix, std::vector<Pix>, std::greater<Pix> > L;
cost_map(start_point) = 0;
L.emplace(Pix{ start_point, 0/*cost*/ });
while (!L.empty())
{
Pix pix = L.top(); L.pop();
Point q = pix.pt; // 'q' from the article
if (processed(q))
continue; // already processed (with lower cost, see note below)
processed(q) = 1;
#if 1
const float cost_q = pix.cost;
#else
const float cost_q = cost_map(q);
CV_Assert(cost_q == pix.cost);
#endif
for (int n = 0; n < 8; n++) // scan neighbours
{
Point r(q.x + neighbors[n][0], q.y + neighbors[n][1]); // 'r' from the article
if (r.x < 0 || r.x >= src_size.width || r.y < 0 || r.y >= src_size.height)
continue; // out of range
#if !defined(__EMSCRIPTEN__) // slower in JS
float& cost_r = cost_map(r);
if (cost_r < cost_q)
continue; // already processed
#else
if (processed(r))
continue; // already processed
float& cost_r = cost_map(r);
CV_DbgCheckLE(cost_q, cost_r, "INTERNAL ERROR: sorted queue is corrupted");
#endif
float cost = cost_q + local_cost(q, r); // TODO(opt): compute partially until cost < cost_r
if (cost < cost_r)
{
#if 0 // avoid compiler warning
if (cost_r != FLT_MAX)
{
// In article the point 'r' is removed from the queue L
// to be re-inserted again with sorting against new optimized cost.
// We can do nothing, because "new point" will be placed before in the sorted queue.
// Old point will be skipped through "if (processed(q))" check above after processing of new optimal candidate.
//
// This approach leads to some performance impact, however it is much smaller than element removal from the sorted queue.
// So, do nothing.
}
#endif
cost_r = cost;
L.emplace(Pix{ r, cost });
optimalPathsMap(r) = (uchar)neighbors_encode[n];
}
}
}
}
void getContour(const Point& target, OutputArray contour_, bool backward)
{
CV_TRACE_FUNCTION();
CV_Assert(!optimalPathsMap.empty() && "buildMap() must be called before getContour()");
const int cols = optimalPathsMap.cols;
const int rows = optimalPathsMap.rows;
std::vector<Point> result; result.reserve(512);
size_t loop_check = 4096;
Point pt = target;
for (size_t i = 0; i < (size_t)rows * cols; i++) // don't hang on invalid maps
{
CV_CheckLT(pt.x, cols, "");
CV_CheckLT(pt.y, rows, "");
result.push_back(pt);
int direction = (int)optimalPathsMap(pt);
if (direction == 0)
break; // stop, start point is reached
CV_CheckLT(direction, 9, "Map is invalid");
Point next(pt.x + neighbors[direction - 1][0], pt.y + neighbors[direction - 1][1]);
pt = next;
if (result.size() == loop_check) // optional sanity check of invalid maps with loops (don't eat huge amount of memory)
{
loop_check *= 4; // next limit for loop check
for (const auto& pt_check : result)
{
CV_CheckNE(pt_check, pt, "Map is invalid. Contour loop is detected");
}
}
}
if (backward)
{
_InputArray(result).copyTo(contour_);
}
else
{
const int N = (int)result.size();
const int sz[1] = { N };
contour_.create(1, sz, CV_32SC2);
Mat_<Point> contour = contour_.getMat();
for (int i = 0; i < N; i++)
{
contour.at<Point>(i) = result[N - (i + 1)];
}
}
}
};
IntelligentScissorsMB::IntelligentScissorsMB()
: impl(std::make_shared<Impl>())
{
// nothing
}
IntelligentScissorsMB& IntelligentScissorsMB::setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude)
{
CV_DbgAssert(impl);
impl->setWeights(weight_non_edge, weight_gradient_direction, weight_gradient_magnitude);
return *this;
}
IntelligentScissorsMB& IntelligentScissorsMB::setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max)
{
CV_DbgAssert(impl);
impl->setGradientMagnitudeMaxLimit(gradient_magnitude_threshold_max);
return *this;
}
IntelligentScissorsMB& IntelligentScissorsMB::setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value)
{
CV_DbgAssert(impl);
impl->setEdgeFeatureZeroCrossingParameters(gradient_magnitude_min_value);
return *this;
}
IntelligentScissorsMB& IntelligentScissorsMB::setEdgeFeatureCannyParameters(
double threshold1, double threshold2,
int apertureSize, bool L2gradient
)
{
CV_DbgAssert(impl);
impl->setEdgeFeatureCannyParameters(threshold1, threshold2, apertureSize, L2gradient);
return *this;
}
IntelligentScissorsMB& IntelligentScissorsMB::applyImage(InputArray image)
{
CV_DbgAssert(impl);
impl->applyImage(image);
return *this;
}
IntelligentScissorsMB& IntelligentScissorsMB::applyImageFeatures(
InputArray non_edge, InputArray gradient_direction, InputArray gradient_magnitude,
InputArray image
)
{
CV_DbgAssert(impl);
impl->applyImageFeatures(non_edge, gradient_direction, gradient_magnitude, image);
return *this;
}
void IntelligentScissorsMB::buildMap(const Point& pt)
{
CV_DbgAssert(impl);
impl->buildMap(pt);
}
void IntelligentScissorsMB::getContour(const Point& target, OutputArray contour, bool backward) const
{
CV_DbgAssert(impl);
impl->getContour(target, contour, backward);
}
}} // namespace