test_houghcircles.py
3.59 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/python
'''
This example illustrates how to use cv.HoughCircles() function.
'''
# Python 2/3 compatibility
from __future__ import print_function
import cv2 as cv
import numpy as np
import sys
from numpy import pi, sin, cos
from tests_common import NewOpenCVTests
def circleApproximation(circle):
nPoints = 30
dPhi = 2*pi / nPoints
contour = []
for i in range(nPoints):
contour.append(([circle[0] + circle[2]*cos(i*dPhi),
circle[1] + circle[2]*sin(i*dPhi)]))
return np.array(contour).astype(int)
def convContoursIntersectiponRate(c1, c2):
s1 = cv.contourArea(c1)
s2 = cv.contourArea(c2)
s, _ = cv.intersectConvexConvex(c1, c2)
return 2*s/(s1+s2)
class houghcircles_test(NewOpenCVTests):
def test_houghcircles(self):
fn = "samples/data/board.jpg"
src = self.get_sample(fn, 1)
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
img = cv.medianBlur(img, 5)
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
testCircles = [[38, 181, 17.6],
[99.7, 166, 13.12],
[142.7, 160, 13.52],
[223.6, 110, 8.62],
[79.1, 206.7, 8.62],
[47.5, 351.6, 11.64],
[189.5, 354.4, 11.64],
[189.8, 298.9, 10.64],
[189.5, 252.4, 14.62],
[252.5, 393.4, 15.62],
[602.9, 467.5, 11.42],
[222, 210.4, 9.12],
[263.1, 216.7, 9.12],
[359.8, 222.6, 9.12],
[518.9, 120.9, 9.12],
[413.8, 113.4, 9.12],
[489, 127.2, 9.12],
[448.4, 121.3, 9.12],
[384.6, 128.9, 8.62]]
matches_counter = 0
for i in range(len(testCircles)):
for j in range(len(circles)):
tstCircle = circleApproximation(testCircles[i])
circle = circleApproximation(circles[j])
if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
matches_counter += 1
self.assertGreater(float(matches_counter) / len(testCircles), .5)
self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
def test_houghcircles_alt(self):
fn = "samples/data/board.jpg"
src = self.get_sample(fn, 1)
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
img = cv.medianBlur(img, 5)
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT_ALT, 1, 10, np.array([]), 300, 0.9, 1, 30)
self.assertEqual(circles.shape, (1, 18, 3))
circles = circles[0]
testCircles = [[38, 181, 17.6],
[99.7, 166, 13.12],
[142.7, 160, 13.52],
[223.6, 110, 8.62],
[79.1, 206.7, 8.62],
[47.5, 351.6, 11.64],
[189.5, 354.4, 11.64],
[189.8, 298.9, 10.64],
[189.5, 252.4, 14.62],
[252.5, 393.4, 15.62],
[602.9, 467.5, 11.42],
[222, 210.4, 9.12],
[263.1, 216.7, 9.12],
[359.8, 222.6, 9.12],
[518.9, 120.9, 9.12],
[413.8, 113.4, 9.12],
[489, 127.2, 9.12],
[448.4, 121.3, 9.12],
[384.6, 128.9, 8.62]]
matches_counter = 0
for i in range(len(testCircles)):
for j in range(len(circles)):
tstCircle = circleApproximation(testCircles[i])
circle = circleApproximation(circles[j])
if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
matches_counter += 1
self.assertGreater(float(matches_counter) / len(testCircles), .5)
self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()