exposure_compensate.cpp
20.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_EIGEN
#include <Eigen/Core>
#include <Eigen/Dense>
#endif
namespace cv {
namespace detail {
Ptr<ExposureCompensator> ExposureCompensator::createDefault(int type)
{
Ptr<ExposureCompensator> e;
if (type == NO)
e = makePtr<NoExposureCompensator>();
else if (type == GAIN)
e = makePtr<GainCompensator>();
else if (type == GAIN_BLOCKS)
e = makePtr<BlocksGainCompensator>();
else if (type == CHANNELS)
e = makePtr<ChannelsCompensator>();
else if (type == CHANNELS_BLOCKS)
e = makePtr<BlocksChannelsCompensator>();
if (e.get() != nullptr)
return e;
CV_Error(Error::StsBadArg, "unsupported exposure compensation method");
}
void ExposureCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<UMat> &masks)
{
std::vector<std::pair<UMat,uchar> > level_masks;
for (size_t i = 0; i < masks.size(); ++i)
level_masks.push_back(std::make_pair(masks[i], (uchar)255));
feed(corners, images, level_masks);
}
void GainCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
LOGLN("Exposure compensation...");
#if ENABLE_LOG
int64 t = getTickCount();
#endif
const int num_images = static_cast<int>(images.size());
Mat accumulated_gains;
prepareSimilarityMask(corners, images);
for (int n = 0; n < nr_feeds_; ++n)
{
if (n > 0)
{
// Apply previous iteration gains
for (int i = 0; i < num_images; ++i)
apply(i, corners[i], images[i], masks[i].first);
}
singleFeed(corners, images, masks);
if (n == 0)
accumulated_gains = gains_.clone();
else
multiply(accumulated_gains, gains_, accumulated_gains);
}
gains_ = accumulated_gains;
LOGLN("Exposure compensation, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}
void GainCompensator::singleFeed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
CV_Assert(corners.size() == images.size() && images.size() == masks.size());
if (images.size() == 0)
return;
const int num_channels = images[0].channels();
CV_Assert(std::all_of(images.begin(), images.end(),
[num_channels](const UMat& image) { return image.channels() == num_channels; }));
CV_Assert(num_channels == 1 || num_channels == 3);
const int num_images = static_cast<int>(images.size());
Mat_<int> N(num_images, num_images); N.setTo(0);
Mat_<double> I(num_images, num_images); I.setTo(0);
Mat_<bool> skip(num_images, 1); skip.setTo(true);
Mat subimg1, subimg2;
Mat_<uchar> submask1, submask2, intersect;
std::vector<UMat>::iterator similarity_it = similarities_.begin();
for (int i = 0; i < num_images; ++i)
{
for (int j = i; j < num_images; ++j)
{
Rect roi;
if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi))
{
subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i])).getMat(ACCESS_READ);
subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j])).getMat(ACCESS_READ);
submask1 = masks[i].first(Rect(roi.tl() - corners[i], roi.br() - corners[i])).getMat(ACCESS_READ);
submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j])).getMat(ACCESS_READ);
intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second);
if (!similarities_.empty())
{
CV_Assert(similarity_it != similarities_.end());
UMat similarity = *similarity_it++;
// in-place operation has an issue. don't remove the swap
// detail https://github.com/opencv/opencv/issues/19184
Mat_<uchar> intersect_updated;
bitwise_and(intersect, similarity, intersect_updated);
std::swap(intersect, intersect_updated);
}
int intersect_count = countNonZero(intersect);
N(i, j) = N(j, i) = std::max(1, intersect_count);
// Don't compute Isums if subimages do not intersect anyway
if (intersect_count == 0)
continue;
// Don't skip images that intersect with at least one other image
if (i != j)
{
skip(i, 0) = false;
skip(j, 0) = false;
}
double Isum1 = 0, Isum2 = 0;
for (int y = 0; y < roi.height; ++y)
{
if (num_channels == 3)
{
const Vec<uchar, 3>* r1 = subimg1.ptr<Vec<uchar, 3> >(y);
const Vec<uchar, 3>* r2 = subimg2.ptr<Vec<uchar, 3> >(y);
for (int x = 0; x < roi.width; ++x)
{
if (intersect(y, x))
{
Isum1 += norm(r1[x]);
Isum2 += norm(r2[x]);
}
}
}
else // if (num_channels == 1)
{
const uchar* r1 = subimg1.ptr<uchar>(y);
const uchar* r2 = subimg2.ptr<uchar>(y);
for (int x = 0; x < roi.width; ++x)
{
if (intersect(y, x))
{
Isum1 += r1[x];
Isum2 += r2[x];
}
}
}
}
I(i, j) = Isum1 / N(i, j);
I(j, i) = Isum2 / N(i, j);
}
}
}
if (getUpdateGain() || gains_.rows != num_images)
{
double alpha = 0.01;
double beta = 100;
int num_eq = num_images - countNonZero(skip);
gains_.create(num_images, 1);
gains_.setTo(1);
// No image process, gains are all set to one, stop here
if (num_eq == 0)
return;
Mat_<double> A(num_eq, num_eq); A.setTo(0);
Mat_<double> b(num_eq, 1); b.setTo(0);
for (int i = 0, ki = 0; i < num_images; ++i)
{
if (skip(i, 0))
continue;
for (int j = 0, kj = 0; j < num_images; ++j)
{
if (skip(j, 0))
continue;
b(ki, 0) += beta * N(i, j);
A(ki, ki) += beta * N(i, j);
if (j != i)
{
A(ki, ki) += 2 * alpha * I(i, j) * I(i, j) * N(i, j);
A(ki, kj) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j);
}
++kj;
}
++ki;
}
Mat_<double> l_gains;
#ifdef HAVE_EIGEN
Eigen::MatrixXf eigen_A, eigen_b, eigen_x;
cv2eigen(A, eigen_A);
cv2eigen(b, eigen_b);
Eigen::LLT<Eigen::MatrixXf> solver(eigen_A);
#if ENABLE_LOG
if (solver.info() != Eigen::ComputationInfo::Success)
LOGLN("Failed to solve exposure compensation system");
#endif
eigen_x = solver.solve(eigen_b);
Mat_<float> l_gains_float;
eigen2cv(eigen_x, l_gains_float);
l_gains_float.convertTo(l_gains, CV_64FC1);
#else
solve(A, b, l_gains);
#endif
CV_CheckTypeEQ(l_gains.type(), CV_64FC1, "");
for (int i = 0, j = 0; i < num_images; ++i)
{
// Only assign non-skipped gains. Other gains are already set to 1
if (!skip(i, 0))
gains_.at<double>(i, 0) = l_gains(j++, 0);
}
}
}
void GainCompensator::apply(int index, Point /*corner*/, InputOutputArray image, InputArray /*mask*/)
{
CV_INSTRUMENT_REGION();
multiply(image, gains_(index, 0), image);
}
std::vector<double> GainCompensator::gains() const
{
std::vector<double> gains_vec(gains_.rows);
for (int i = 0; i < gains_.rows; ++i)
gains_vec[i] = gains_(i, 0);
return gains_vec;
}
void GainCompensator::getMatGains(std::vector<Mat>& umv)
{
umv.clear();
for (int i = 0; i < gains_.rows; ++i)
umv.push_back(Mat(1,1,CV_64FC1,Scalar(gains_(i, 0))));
}
void GainCompensator::setMatGains(std::vector<Mat>& umv)
{
gains_=Mat_<double>(static_cast<int>(umv.size()),1);
for (int i = 0; i < static_cast<int>(umv.size()); i++)
{
int type = umv[i].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_CheckType(type, depth == CV_64F && cn == 1, "Only double images are supported for gain");
CV_Assert(umv[i].rows == 1 && umv[i].cols == 1);
gains_(i, 0) = umv[i].at<double>(0, 0);
}
}
void GainCompensator::prepareSimilarityMask(
const std::vector<Point> &corners, const std::vector<UMat> &images)
{
if (similarity_threshold_ >= 1)
{
LOGLN(" skipping similarity mask: disabled");
return;
}
if (!similarities_.empty())
{
LOGLN(" skipping similarity mask: already set");
return;
}
LOGLN(" calculating similarity mask");
const int num_images = static_cast<int>(images.size());
for (int i = 0; i < num_images; ++i)
{
for (int j = i; j < num_images; ++j)
{
Rect roi;
if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi))
{
UMat subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i]));
UMat subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j]));
UMat similarity = buildSimilarityMask(subimg1, subimg2);
similarities_.push_back(similarity);
}
}
}
}
UMat GainCompensator::buildSimilarityMask(InputArray src_array1, InputArray src_array2)
{
CV_Assert(src_array1.rows() == src_array2.rows() && src_array1.cols() == src_array2.cols());
CV_Assert(src_array1.type() == src_array2.type());
CV_Assert(src_array1.type() == CV_8UC3 || src_array1.type() == CV_8UC1);
Mat src1 = src_array1.getMat();
Mat src2 = src_array2.getMat();
UMat umat_similarity(src1.rows, src1.cols, CV_8UC1);
Mat similarity = umat_similarity.getMat(ACCESS_WRITE);
if (src1.channels() == 3)
{
for (int y = 0; y < similarity.rows; ++y)
{
for (int x = 0; x < similarity.cols; ++x)
{
Vec<float, 3> vec_diff =
Vec<float, 3>(*src1.ptr<Vec<uchar, 3>>(y, x))
- Vec<float, 3>(*src2.ptr<Vec<uchar, 3>>(y, x));
double diff = norm(vec_diff * (1.f / 255.f));
*similarity.ptr<uchar>(y, x) = diff <= similarity_threshold_ ? 255 : 0;
}
}
}
else // if (src1.channels() == 1)
{
for (int y = 0; y < similarity.rows; ++y)
{
for (int x = 0; x < similarity.cols; ++x)
{
float diff = std::abs(static_cast<int>(*src1.ptr<uchar>(y, x))
- static_cast<int>(*src2.ptr<uchar>(y, x))) / 255.f;
*similarity.ptr<uchar>(y, x) = diff <= similarity_threshold_ ? 255 : 0;
}
}
}
similarity.release();
Mat kernel = getStructuringElement(MORPH_RECT, Size(3,3));
UMat umat_erode;
erode(umat_similarity, umat_erode, kernel);
dilate(umat_erode, umat_similarity, kernel);
return umat_similarity;
}
void ChannelsCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
std::array<std::vector<UMat>, 3> images_channels;
// Split channels of each input image
for (const UMat& image: images)
{
std::vector<UMat> image_channels;
image_channels.resize(3);
split(image, image_channels);
for (int i = 0; i < int(images_channels.size()); ++i)
images_channels[i].emplace_back(std::move(image_channels[i]));
}
// For each channel, feed the channel of each image in a GainCompensator
gains_.clear();
gains_.resize(images.size());
GainCompensator compensator(getNrFeeds());
compensator.setSimilarityThreshold(getSimilarityThreshold());
compensator.prepareSimilarityMask(corners, images);
for (int c = 0; c < 3; ++c)
{
const std::vector<UMat>& channels = images_channels[c];
compensator.feed(corners, channels, masks);
std::vector<double> gains = compensator.gains();
for (int i = 0; i < int(gains.size()); ++i)
gains_.at(i)[c] = gains[i];
}
}
void ChannelsCompensator::apply(int index, Point /*corner*/, InputOutputArray image, InputArray /*mask*/)
{
CV_INSTRUMENT_REGION();
multiply(image, gains_.at(index), image);
}
void ChannelsCompensator::getMatGains(std::vector<Mat>& umv)
{
umv.clear();
for (int i = 0; i < static_cast<int>(gains_.size()); ++i)
{
Mat m;
Mat(gains_[i]).copyTo(m);
umv.push_back(m);
}
}
void ChannelsCompensator::setMatGains(std::vector<Mat>& umv)
{
for (int i = 0; i < static_cast<int>(umv.size()); i++)
{
Scalar s;
umv[i].copyTo(s);
gains_.push_back(s);
}
}
template<class Compensator>
void BlocksCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
CV_Assert(corners.size() == images.size() && images.size() == masks.size());
const int num_images = static_cast<int>(images.size());
std::vector<Size> bl_per_imgs(num_images);
std::vector<Point> block_corners;
std::vector<UMat> block_images;
std::vector<std::pair<UMat,uchar> > block_masks;
// Construct blocks for gain compensator
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
Size bl_per_img((images[img_idx].cols + bl_width_ - 1) / bl_width_,
(images[img_idx].rows + bl_height_ - 1) / bl_height_);
int bl_width = (images[img_idx].cols + bl_per_img.width - 1) / bl_per_img.width;
int bl_height = (images[img_idx].rows + bl_per_img.height - 1) / bl_per_img.height;
bl_per_imgs[img_idx] = bl_per_img;
for (int by = 0; by < bl_per_img.height; ++by)
{
for (int bx = 0; bx < bl_per_img.width; ++bx)
{
Point bl_tl(bx * bl_width, by * bl_height);
Point bl_br(std::min(bl_tl.x + bl_width, images[img_idx].cols),
std::min(bl_tl.y + bl_height, images[img_idx].rows));
block_corners.push_back(corners[img_idx] + bl_tl);
block_images.push_back(images[img_idx](Rect(bl_tl, bl_br)));
block_masks.push_back(std::make_pair(masks[img_idx].first(Rect(bl_tl, bl_br)),
masks[img_idx].second));
}
}
}
if (getUpdateGain() || int(gain_maps_.size()) != num_images)
{
Compensator compensator;
compensator.setNrFeeds(getNrFeeds());
compensator.setSimilarityThreshold(getSimilarityThreshold());
compensator.feed(block_corners, block_images, block_masks);
gain_maps_.clear();
gain_maps_.resize(num_images);
Mat_<float> ker(1, 3);
ker(0, 0) = 0.25; ker(0, 1) = 0.5; ker(0, 2) = 0.25;
int bl_idx = 0;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
Size bl_per_img = bl_per_imgs[img_idx];
UMat gain_map = getGainMap(compensator, bl_idx, bl_per_img);
bl_idx += bl_per_img.width*bl_per_img.height;
for (int i=0; i<nr_gain_filtering_iterations_; ++i)
{
UMat tmp;
sepFilter2D(gain_map, tmp, CV_32F, ker, ker);
swap(gain_map, tmp);
}
gain_maps_[img_idx] = gain_map;
}
}
}
UMat BlocksCompensator::getGainMap(const GainCompensator& compensator, int bl_idx, Size bl_per_img)
{
std::vector<double> gains = compensator.gains();
UMat u_gain_map(bl_per_img, CV_32F);
Mat_<float> gain_map = u_gain_map.getMat(ACCESS_WRITE);
for (int by = 0; by < bl_per_img.height; ++by)
for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
gain_map(by, bx) = static_cast<float>(gains[bl_idx]);
return u_gain_map;
}
UMat BlocksCompensator::getGainMap(const ChannelsCompensator& compensator, int bl_idx, Size bl_per_img)
{
std::vector<Scalar> gains = compensator.gains();
UMat u_gain_map(bl_per_img, CV_32FC3);
Mat_<Vec3f> gain_map = u_gain_map.getMat(ACCESS_WRITE);
for (int by = 0; by < bl_per_img.height; ++by)
for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
for (int c = 0; c < 3; ++c)
gain_map(by, bx)[c] = static_cast<float>(gains[bl_idx][c]);
return u_gain_map;
}
void BlocksCompensator::apply(int index, Point /*corner*/, InputOutputArray _image, InputArray /*mask*/)
{
CV_INSTRUMENT_REGION();
CV_Assert(_image.type() == CV_8UC3);
UMat u_gain_map;
if (gain_maps_.at(index).size() == _image.size())
u_gain_map = gain_maps_.at(index);
else
resize(gain_maps_.at(index), u_gain_map, _image.size(), 0, 0, INTER_LINEAR);
if (u_gain_map.channels() != 3)
{
std::vector<UMat> gains_channels;
gains_channels.push_back(u_gain_map);
gains_channels.push_back(u_gain_map);
gains_channels.push_back(u_gain_map);
merge(gains_channels, u_gain_map);
}
multiply(_image, u_gain_map, _image, 1, _image.type());
}
void BlocksCompensator::getMatGains(std::vector<Mat>& umv)
{
umv.clear();
for (int i = 0; i < static_cast<int>(gain_maps_.size()); ++i)
{
Mat m;
gain_maps_[i].copyTo(m);
umv.push_back(m);
}
}
void BlocksCompensator::setMatGains(std::vector<Mat>& umv)
{
for (int i = 0; i < static_cast<int>(umv.size()); i++)
{
UMat m;
umv[i].copyTo(m);
gain_maps_.push_back(m);
}
}
void BlocksGainCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
BlocksCompensator::feed<GainCompensator>(corners, images, masks);
}
void BlocksChannelsCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks)
{
BlocksCompensator::feed<ChannelsCompensator>(corners, images, masks);
}
} // namespace detail
} // namespace cv