stitching_detailed.py 19.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
"""
Stitching sample (advanced)
===========================

Show how to use Stitcher API from python.
"""

# Python 2/3 compatibility
from __future__ import print_function

import argparse
from collections import OrderedDict

import cv2 as cv
import numpy as np

EXPOS_COMP_CHOICES = OrderedDict()
EXPOS_COMP_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS
EXPOS_COMP_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN
EXPOS_COMP_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS
EXPOS_COMP_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS
EXPOS_COMP_CHOICES['no'] = cv.detail.ExposureCompensator_NO

BA_COST_CHOICES = OrderedDict()
BA_COST_CHOICES['ray'] = cv.detail_BundleAdjusterRay
BA_COST_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj
BA_COST_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial
BA_COST_CHOICES['no'] = cv.detail_NoBundleAdjuster

FEATURES_FIND_CHOICES = OrderedDict()
try:
    cv.xfeatures2d_SURF.create() # check if the function can be called
    FEATURES_FIND_CHOICES['surf'] = cv.xfeatures2d_SURF.create
except (AttributeError, cv.error) as e:
    print("SURF not available")
# if SURF not available, ORB is default
FEATURES_FIND_CHOICES['orb'] = cv.ORB.create
try:
    FEATURES_FIND_CHOICES['sift'] = cv.xfeatures2d_SIFT.create
except AttributeError:
    print("SIFT not available")
try:
    FEATURES_FIND_CHOICES['brisk'] = cv.BRISK_create
except AttributeError:
    print("BRISK not available")
try:
    FEATURES_FIND_CHOICES['akaze'] = cv.AKAZE_create
except AttributeError:
    print("AKAZE not available")

SEAM_FIND_CHOICES = OrderedDict()
SEAM_FIND_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR')
SEAM_FIND_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD')
SEAM_FIND_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM)
SEAM_FIND_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)

ESTIMATOR_CHOICES = OrderedDict()
ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator
ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator

WARP_CHOICES = (
    'spherical',
    'plane',
    'affine',
    'cylindrical',
    'fisheye',
    'stereographic',
    'compressedPlaneA2B1',
    'compressedPlaneA1.5B1',
    'compressedPlanePortraitA2B1',
    'compressedPlanePortraitA1.5B1',
    'paniniA2B1',
    'paniniA1.5B1',
    'paniniPortraitA2B1',
    'paniniPortraitA1.5B1',
    'mercator',
    'transverseMercator',
)

WAVE_CORRECT_CHOICES = OrderedDict()
WAVE_CORRECT_CHOICES['horiz'] = cv.detail.WAVE_CORRECT_HORIZ
WAVE_CORRECT_CHOICES['no'] = None
WAVE_CORRECT_CHOICES['vert'] = cv.detail.WAVE_CORRECT_VERT

BLEND_CHOICES = ('multiband', 'feather', 'no',)

parser = argparse.ArgumentParser(
    prog="stitching_detailed.py", description="Rotation model images stitcher"
)
parser.add_argument(
    'img_names', nargs='+',
    help="Files to stitch", type=str
)
parser.add_argument(
    '--try_cuda',
    action='store',
    default=False,
    help="Try to use CUDA. The default value is no. All default values are for CPU mode.",
    type=bool, dest='try_cuda'
)
parser.add_argument(
    '--work_megapix', action='store', default=0.6,
    help="Resolution for image registration step. The default is 0.6 Mpx",
    type=float, dest='work_megapix'
)
parser.add_argument(
    '--features', action='store', default=list(FEATURES_FIND_CHOICES.keys())[0],
    help="Type of features used for images matching. The default is '%s'." % list(FEATURES_FIND_CHOICES.keys())[0],
    choices=FEATURES_FIND_CHOICES.keys(),
    type=str, dest='features'
)
parser.add_argument(
    '--matcher', action='store', default='homography',
    help="Matcher used for pairwise image matching. The default is 'homography'.",
    choices=('homography', 'affine'),
    type=str, dest='matcher'
)
parser.add_argument(
    '--estimator', action='store', default=list(ESTIMATOR_CHOICES.keys())[0],
    help="Type of estimator used for transformation estimation. The default is '%s'." % list(ESTIMATOR_CHOICES.keys())[0],
    choices=ESTIMATOR_CHOICES.keys(),
    type=str, dest='estimator'
)
parser.add_argument(
    '--match_conf', action='store',
    help="Confidence for feature matching step. The default is 0.3 for ORB and 0.65 for other feature types.",
    type=float, dest='match_conf'
)
parser.add_argument(
    '--conf_thresh', action='store', default=1.0,
    help="Threshold for two images are from the same panorama confidence.The default is 1.0.",
    type=float, dest='conf_thresh'
)
parser.add_argument(
    '--ba', action='store', default=list(BA_COST_CHOICES.keys())[0],
    help="Bundle adjustment cost function. The default is '%s'." % list(BA_COST_CHOICES.keys())[0],
    choices=BA_COST_CHOICES.keys(),
    type=str, dest='ba'
)
parser.add_argument(
    '--ba_refine_mask', action='store', default='xxxxx',
    help="Set refinement mask for bundle adjustment. It looks like 'x_xxx', "
         "where 'x' means refine respective parameter and '_' means don't refine, "
         "and has the following format:<fx><skew><ppx><aspect><ppy>. "
         "The default mask is 'xxxxx'. "
         "If bundle adjustment doesn't support estimation of selected parameter then "
         "the respective flag is ignored.",
    type=str, dest='ba_refine_mask'
)
parser.add_argument(
    '--wave_correct', action='store', default=list(WAVE_CORRECT_CHOICES.keys())[0],
    help="Perform wave effect correction. The default is '%s'" % list(WAVE_CORRECT_CHOICES.keys())[0],
    choices=WAVE_CORRECT_CHOICES.keys(),
    type=str, dest='wave_correct'
)
parser.add_argument(
    '--save_graph', action='store', default=None,
    help="Save matches graph represented in DOT language to <file_name> file.",
    type=str, dest='save_graph'
)
parser.add_argument(
    '--warp', action='store', default=WARP_CHOICES[0],
    help="Warp surface type. The default is '%s'." % WARP_CHOICES[0],
    choices=WARP_CHOICES,
    type=str, dest='warp'
)
parser.add_argument(
    '--seam_megapix', action='store', default=0.1,
    help="Resolution for seam estimation step. The default is 0.1 Mpx.",
    type=float, dest='seam_megapix'
)
parser.add_argument(
    '--seam', action='store', default=list(SEAM_FIND_CHOICES.keys())[0],
    help="Seam estimation method. The default is '%s'." % list(SEAM_FIND_CHOICES.keys())[0],
    choices=SEAM_FIND_CHOICES.keys(),
    type=str, dest='seam'
)
parser.add_argument(
    '--compose_megapix', action='store', default=-1,
    help="Resolution for compositing step. Use -1 for original resolution. The default is -1",
    type=float, dest='compose_megapix'
)
parser.add_argument(
    '--expos_comp', action='store', default=list(EXPOS_COMP_CHOICES.keys())[0],
    help="Exposure compensation method. The default is '%s'." % list(EXPOS_COMP_CHOICES.keys())[0],
    choices=EXPOS_COMP_CHOICES.keys(),
    type=str, dest='expos_comp'
)
parser.add_argument(
    '--expos_comp_nr_feeds', action='store', default=1,
    help="Number of exposure compensation feed.",
    type=np.int32, dest='expos_comp_nr_feeds'
)
parser.add_argument(
    '--expos_comp_nr_filtering', action='store', default=2,
    help="Number of filtering iterations of the exposure compensation gains.",
    type=float, dest='expos_comp_nr_filtering'
)
parser.add_argument(
    '--expos_comp_block_size', action='store', default=32,
    help="BLock size in pixels used by the exposure compensator. The default is 32.",
    type=np.int32, dest='expos_comp_block_size'
)
parser.add_argument(
    '--blend', action='store', default=BLEND_CHOICES[0],
    help="Blending method. The default is '%s'." % BLEND_CHOICES[0],
    choices=BLEND_CHOICES,
    type=str, dest='blend'
)
parser.add_argument(
    '--blend_strength', action='store', default=5,
    help="Blending strength from [0,100] range. The default is 5",
    type=np.int32, dest='blend_strength'
)
parser.add_argument(
    '--output', action='store', default='result.jpg',
    help="The default is 'result.jpg'",
    type=str, dest='output'
)
parser.add_argument(
    '--timelapse', action='store', default=None,
    help="Output warped images separately as frames of a time lapse movie, "
         "with 'fixed_' prepended to input file names.",
    type=str, dest='timelapse'
)
parser.add_argument(
    '--rangewidth', action='store', default=-1,
    help="uses range_width to limit number of images to match with.",
    type=int, dest='rangewidth'
)

__doc__ += '\n' + parser.format_help()


def get_matcher(args):
    try_cuda = args.try_cuda
    matcher_type = args.matcher
    if args.match_conf is None:
        if args.features == 'orb':
            match_conf = 0.3
        else:
            match_conf = 0.65
    else:
        match_conf = args.match_conf
    range_width = args.rangewidth
    if matcher_type == "affine":
        matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
    elif range_width == -1:
        matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
    else:
        matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf)
    return matcher


def get_compensator(args):
    expos_comp_type = EXPOS_COMP_CHOICES[args.expos_comp]
    expos_comp_nr_feeds = args.expos_comp_nr_feeds
    expos_comp_block_size = args.expos_comp_block_size
    # expos_comp_nr_filtering = args.expos_comp_nr_filtering
    if expos_comp_type == cv.detail.ExposureCompensator_CHANNELS:
        compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds)
        # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
    elif expos_comp_type == cv.detail.ExposureCompensator_CHANNELS_BLOCKS:
        compensator = cv.detail_BlocksChannelsCompensator(
            expos_comp_block_size, expos_comp_block_size,
            expos_comp_nr_feeds
        )
        # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
    else:
        compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type)
    return compensator


def main():
    args = parser.parse_args()
    img_names = args.img_names
    print(img_names)
    work_megapix = args.work_megapix
    seam_megapix = args.seam_megapix
    compose_megapix = args.compose_megapix
    conf_thresh = args.conf_thresh
    ba_refine_mask = args.ba_refine_mask
    wave_correct = WAVE_CORRECT_CHOICES[args.wave_correct]
    if args.save_graph is None:
        save_graph = False
    else:
        save_graph = True
    warp_type = args.warp
    blend_type = args.blend
    blend_strength = args.blend_strength
    result_name = args.output
    if args.timelapse is not None:
        timelapse = True
        if args.timelapse == "as_is":
            timelapse_type = cv.detail.Timelapser_AS_IS
        elif args.timelapse == "crop":
            timelapse_type = cv.detail.Timelapser_CROP
        else:
            print("Bad timelapse method")
            exit()
    else:
        timelapse = False
    finder = FEATURES_FIND_CHOICES[args.features]()
    seam_work_aspect = 1
    full_img_sizes = []
    features = []
    images = []
    is_work_scale_set = False
    is_seam_scale_set = False
    is_compose_scale_set = False
    for name in img_names:
        full_img = cv.imread(cv.samples.findFile(name))
        if full_img is None:
            print("Cannot read image ", name)
            exit()
        full_img_sizes.append((full_img.shape[1], full_img.shape[0]))
        if work_megapix < 0:
            img = full_img
            work_scale = 1
            is_work_scale_set = True
        else:
            if is_work_scale_set is False:
                work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1])))
                is_work_scale_set = True
            img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT)
        if is_seam_scale_set is False:
            seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1])))
            seam_work_aspect = seam_scale / work_scale
            is_seam_scale_set = True
        img_feat = cv.detail.computeImageFeatures2(finder, img)
        features.append(img_feat)
        img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT)
        images.append(img)

    matcher = get_matcher(args)
    p = matcher.apply2(features)
    matcher.collectGarbage()

    if save_graph:
        with open(args.save_graph, 'w') as fh:
            fh.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))

    indices = cv.detail.leaveBiggestComponent(features, p, conf_thresh)
    img_subset = []
    img_names_subset = []
    full_img_sizes_subset = []
    for i in range(len(indices)):
        img_names_subset.append(img_names[indices[i, 0]])
        img_subset.append(images[indices[i, 0]])
        full_img_sizes_subset.append(full_img_sizes[indices[i, 0]])
    images = img_subset
    img_names = img_names_subset
    full_img_sizes = full_img_sizes_subset
    num_images = len(img_names)
    if num_images < 2:
        print("Need more images")
        exit()

    estimator = ESTIMATOR_CHOICES[args.estimator]()
    b, cameras = estimator.apply(features, p, None)
    if not b:
        print("Homography estimation failed.")
        exit()
    for cam in cameras:
        cam.R = cam.R.astype(np.float32)

    adjuster = BA_COST_CHOICES[args.ba]()
    adjuster.setConfThresh(1)
    refine_mask = np.zeros((3, 3), np.uint8)
    if ba_refine_mask[0] == 'x':
        refine_mask[0, 0] = 1
    if ba_refine_mask[1] == 'x':
        refine_mask[0, 1] = 1
    if ba_refine_mask[2] == 'x':
        refine_mask[0, 2] = 1
    if ba_refine_mask[3] == 'x':
        refine_mask[1, 1] = 1
    if ba_refine_mask[4] == 'x':
        refine_mask[1, 2] = 1
    adjuster.setRefinementMask(refine_mask)
    b, cameras = adjuster.apply(features, p, cameras)
    if not b:
        print("Camera parameters adjusting failed.")
        exit()
    focals = []
    for cam in cameras:
        focals.append(cam.focal)
    focals.sort()
    if len(focals) % 2 == 1:
        warped_image_scale = focals[len(focals) // 2]
    else:
        warped_image_scale = (focals[len(focals) // 2] + focals[len(focals) // 2 - 1]) / 2
    if wave_correct is not None:
        rmats = []
        for cam in cameras:
            rmats.append(np.copy(cam.R))
        rmats = cv.detail.waveCorrect(rmats, wave_correct)
        for idx, cam in enumerate(cameras):
            cam.R = rmats[idx]
    corners = []
    masks_warped = []
    images_warped = []
    sizes = []
    masks = []
    for i in range(0, num_images):
        um = cv.UMat(255 * np.ones((images[i].shape[0], images[i].shape[1]), np.uint8))
        masks.append(um)

    warper = cv.PyRotationWarper(warp_type, warped_image_scale * seam_work_aspect)  # warper could be nullptr?
    for idx in range(0, num_images):
        K = cameras[idx].K().astype(np.float32)
        swa = seam_work_aspect
        K[0, 0] *= swa
        K[0, 2] *= swa
        K[1, 1] *= swa
        K[1, 2] *= swa
        corner, image_wp = warper.warp(images[idx], K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT)
        corners.append(corner)
        sizes.append((image_wp.shape[1], image_wp.shape[0]))
        images_warped.append(image_wp)
        p, mask_wp = warper.warp(masks[idx], K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT)
        masks_warped.append(mask_wp.get())

    images_warped_f = []
    for img in images_warped:
        imgf = img.astype(np.float32)
        images_warped_f.append(imgf)

    compensator = get_compensator(args)
    compensator.feed(corners=corners, images=images_warped, masks=masks_warped)

    seam_finder = SEAM_FIND_CHOICES[args.seam]
    masks_warped = seam_finder.find(images_warped_f, corners, masks_warped)
    compose_scale = 1
    corners = []
    sizes = []
    blender = None
    timelapser = None
    # https://github.com/opencv/opencv/blob/master/samples/cpp/stitching_detailed.cpp#L725 ?
    for idx, name in enumerate(img_names):
        full_img = cv.imread(name)
        if not is_compose_scale_set:
            if compose_megapix > 0:
                compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1])))
            is_compose_scale_set = True
            compose_work_aspect = compose_scale / work_scale
            warped_image_scale *= compose_work_aspect
            warper = cv.PyRotationWarper(warp_type, warped_image_scale)
            for i in range(0, len(img_names)):
                cameras[i].focal *= compose_work_aspect
                cameras[i].ppx *= compose_work_aspect
                cameras[i].ppy *= compose_work_aspect
                sz = (int(round(full_img_sizes[i][0] * compose_scale)),
                      int(round(full_img_sizes[i][1] * compose_scale)))
                K = cameras[i].K().astype(np.float32)
                roi = warper.warpRoi(sz, K, cameras[i].R)
                corners.append(roi[0:2])
                sizes.append(roi[2:4])
        if abs(compose_scale - 1) > 1e-1:
            img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale,
                            interpolation=cv.INTER_LINEAR_EXACT)
        else:
            img = full_img
        _img_size = (img.shape[1], img.shape[0])
        K = cameras[idx].K().astype(np.float32)
        corner, image_warped = warper.warp(img, K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT)
        mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8)
        p, mask_warped = warper.warp(mask, K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT)
        compensator.apply(idx, corners[idx], image_warped, mask_warped)
        image_warped_s = image_warped.astype(np.int16)
        dilated_mask = cv.dilate(masks_warped[idx], None)
        seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT)
        mask_warped = cv.bitwise_and(seam_mask, mask_warped)
        if blender is None and not timelapse:
            blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
            dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes)
            blend_width = np.sqrt(dst_sz[2] * dst_sz[3]) * blend_strength / 100
            if blend_width < 1:
                blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
            elif blend_type == "multiband":
                blender = cv.detail_MultiBandBlender()
                blender.setNumBands((np.log(blend_width) / np.log(2.) - 1.).astype(np.int))
            elif blend_type == "feather":
                blender = cv.detail_FeatherBlender()
                blender.setSharpness(1. / blend_width)
            blender.prepare(dst_sz)
        elif timelapser is None and timelapse:
            timelapser = cv.detail.Timelapser_createDefault(timelapse_type)
            timelapser.initialize(corners, sizes)
        if timelapse:
            ma_tones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8)
            timelapser.process(image_warped_s, ma_tones, corners[idx])
            pos_s = img_names[idx].rfind("/")
            if pos_s == -1:
                fixed_file_name = "fixed_" + img_names[idx]
            else:
                fixed_file_name = img_names[idx][:pos_s + 1] + "fixed_" + img_names[idx][pos_s + 1:]
            cv.imwrite(fixed_file_name, timelapser.getDst())
        else:
            blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx])
    if not timelapse:
        result = None
        result_mask = None
        result, result_mask = blender.blend(result, result_mask)
        cv.imwrite(result_name, result)
        zoom_x = 600.0 / result.shape[1]
        dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
        dst = cv.resize(dst, dsize=None, fx=zoom_x, fy=zoom_x)
        cv.imshow(result_name, dst)
        cv.waitKey()

    print("Done")


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()