chessboard.hpp
35.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef CHESSBOARD_HPP_
#define CHESSBOARD_HPP_
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include <vector>
#include <set>
#include <map>
namespace cv {
namespace details{
/**
* \brief Fast point sysmetric cross detector based on a localized radon transformation
*/
class FastX : public cv::Feature2D
{
public:
struct Parameters
{
float strength; //!< minimal strength of a valid junction in dB
float resolution; //!< angle resolution in radians
int branches; //!< the number of branches
int min_scale; //!< scale level [0..8]
int max_scale; //!< scale level [0..8]
bool filter; //!< post filter feature map to improve impulse response
bool super_resolution; //!< up-sample
Parameters()
{
strength = 40;
resolution = float(CV_PI*0.25);
branches = 2;
min_scale = 2;
max_scale = 5;
super_resolution = true;
filter = true;
}
};
public:
FastX(const Parameters &config = Parameters());
virtual ~FastX(){};
void reconfigure(const Parameters ¶);
//declaration to be wrapped by rbind
void detect(cv::InputArray image,std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::Mat())override
{cv::Feature2D::detect(image.getMat(),keypoints,mask.getMat());}
virtual void detectAndCompute(cv::InputArray image,
cv::InputArray mask,
std::vector<cv::KeyPoint>& keypoints,
cv::OutputArray descriptors,
bool useProvidedKeyPoints = false)override;
void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints,
std::vector<cv::Mat> &feature_maps,
const cv::Mat& mask=cv::Mat())const;
void detectImpl(const cv::Mat& image,
std::vector<cv::Mat> &rotated_images,
std::vector<cv::Mat> &feature_maps,
const cv::Mat& mask=cv::Mat())const;
void findKeyPoints(const std::vector<cv::Mat> &feature_map,
std::vector<cv::KeyPoint>& keypoints,
const cv::Mat& mask = cv::Mat())const;
std::vector<std::vector<float> > calcAngles(const std::vector<cv::Mat> &rotated_images,
std::vector<cv::KeyPoint> &keypoints)const;
// define pure virtual methods
virtual int descriptorSize()const override{return 0;};
virtual int descriptorType()const override{return 0;};
virtual void operator()( cv::InputArray image, cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints, cv::OutputArray descriptors, bool useProvidedKeypoints=false )const
{
descriptors.clear();
detectImpl(image.getMat(),keypoints,mask);
if(!useProvidedKeypoints) // suppress compiler warning
return;
return;
}
protected:
virtual void computeImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)const
{
descriptors = cv::Mat();
detectImpl(image,keypoints);
}
private:
void detectImpl(const cv::Mat& _src, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask)const;
virtual void detectImpl(cv::InputArray image, std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::noArray())const;
void rotate(float angle,cv::InputArray img,cv::Size size,cv::OutputArray out)const;
void calcFeatureMap(const cv::Mat &images,cv::Mat& out)const;
private:
Parameters parameters;
};
/**
* \brief Ellipse class
*/
class Ellipse
{
public:
Ellipse();
Ellipse(const cv::Point2f ¢er, const cv::Size2f &axes, float angle);
void draw(cv::InputOutputArray img,const cv::Scalar &color = cv::Scalar::all(120))const;
bool contains(const cv::Point2f &pt)const;
cv::Point2f getCenter()const;
const cv::Size2f &getAxes()const;
private:
cv::Point2f center;
cv::Size2f axes;
float angle,cosf,sinf;
};
/**
* \brief Chessboard corner detector
*
* The detectors tries to find all chessboard corners of an imaged
* chessboard and returns them as an ordered vector of KeyPoints.
* Thereby, the left top corner has index 0 and the bottom right
* corner n*m-1.
*/
class Chessboard: public cv::Feature2D
{
public:
static const int DUMMY_FIELD_SIZE = 100; // in pixel
/**
* \brief Configuration of a chessboard corner detector
*
*/
struct Parameters
{
cv::Size chessboard_size; //!< size of the chessboard
int min_scale; //!< scale level [0..8]
int max_scale; //!< scale level [0..8]
int max_points; //!< maximal number of points regarded
int max_tests; //!< maximal number of tested hypothesis
bool super_resolution; //!< use super-repsolution for chessboard detection
bool larger; //!< indicates if larger boards should be returned
bool marker; //!< indicates that valid boards must have a white and black cirlce marker used for orientation
Parameters()
{
chessboard_size = cv::Size(9,6);
min_scale = 3;
max_scale = 4;
super_resolution = true;
max_points = 200;
max_tests = 50;
larger = false;
marker = false;
}
Parameters(int scale,int _max_points):
min_scale(scale),
max_scale(scale),
max_points(_max_points)
{
chessboard_size = cv::Size(9,6);
}
};
/**
* \brief Gets the 3D objects points for the chessboard assuming the
* left top corner is located at the origin.
*
* \param[in] pattern_size Number of rows and cols of the pattern
* \param[in] cell_size Size of one cell
*
* \returns Returns the object points as CV_32FC3
*/
static cv::Mat getObjectPoints(const cv::Size &pattern_size,float cell_size);
/**
* \brief Class for searching and storing chessboard corners.
*
* The search is based on a feature map having strong pixel
* values at positions where a chessboard corner is located.
*
* The board must be rectangular but supports empty cells
*
*/
class Board
{
public:
/**
* \brief Estimates the position of the next point on a line using cross ratio constrain
*
* cross ratio:
* d12/d34 = d13/d24
*
* point order on the line:
* pt1 --> pt2 --> pt3 --> pt4
*
* \param[in] pt1 First point coordinate
* \param[in] pt2 Second point coordinate
* \param[in] pt3 Third point coordinate
* \param[out] pt4 Forth point coordinate
*
*/
static bool estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2,cv::Point2f &p3);
// using 1D homography
static bool estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3, cv::Point2f &p4);
/**
* \brief Checks if all points of a row or column have a valid cross ratio constraint
*
* cross ratio:
* d12/d34 = d13/d24
*
* point order on the row/column:
* pt1 --> pt2 --> pt3 --> pt4
*
* \param[in] points THe points of the row/column
*
*/
static bool checkRowColumn(const std::vector<cv::Point2f> &points);
/**
* \brief Estimates the search area for the next point on the line using cross ratio
*
* point order on the line:
* (p0) --> p1 --> p2 --> p3 --> search area
*
* \param[in] p1 First point coordinate
* \param[in] p2 Second point coordinate
* \param[in] p3 Third point coordinate
* \param[in] p Percentage of d34 used for the search area width and height [0..1]
* \param[out] ellipse The search area
* \param[in] p0 optional point to improve accuracy
*
* \return Returns false if no search area can be calculated
*
*/
static bool estimateSearchArea(const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3,float p,
Ellipse &ellipse,const cv::Point2f *p0 =NULL);
/**
* \brief Estimates the search area for a specific point based on the given homography
*
* \param[in] H homography describing the transformation from ideal board to real one
* \param[in] row Row of the point
* \param[in] col Col of the point
* \param[in] p Percentage [0..1]
*
* \return Returns false if no search area can be calculated
*
*/
static Ellipse estimateSearchArea(cv::Mat H,int row, int col,float p,int field_size = DUMMY_FIELD_SIZE);
/**
* \brief Searches for the maximum in a given search area
*
* \param[in] map feature map
* \param[in] ellipse search area
* \param[in] min_val Minimum value of the maximum to be accepted as maximum
*
* \return Returns a negative value if all points are outside the ellipse
*
*/
static float findMaxPoint(cv::flann::Index &index,const cv::Mat &data,const Ellipse &ellipse,float white_angle,float black_angle,cv::Point2f &pt);
/**
* \brief Searches for the next point using cross ratio constrain
*
* \param[in] index flann index
* \param[in] data extended flann data
* \param[in] pt1
* \param[in] pt2
* \param[in] pt3
* \param[in] white_angle
* \param[in] black_angle
* \param[in] min_response
* \param[out] point The resulting point
*
* \return Returns false if no point could be found
*
*/
static bool findNextPoint(cv::flann::Index &index,const cv::Mat &data,
const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3,
float white_angle,float black_angle,float min_response,cv::Point2f &point);
/**
* \brief Creates a new Board object
*
*/
Board(float white_angle=0,float black_angle=0);
Board(const cv::Size &size, const std::vector<cv::Point2f> &points,float white_angle=0,float black_angle=0);
Board(const Chessboard::Board &other);
virtual ~Board();
Board& operator=(const Chessboard::Board &other);
/**
* \brief Draws the corners into the given image
*
* \param[in] m The image
* \param[out] m The resulting image
* \param[in] H optional homography to calculate search area
*
*/
void draw(cv::InputArray m,cv::OutputArray out,cv::InputArray H=cv::Mat())const;
/**
* \brief Estimates the pose of the chessboard
*
*/
bool estimatePose(const cv::Size2f &real_size,cv::InputArray _K,cv::OutputArray rvec,cv::OutputArray tvec)const;
/**
* \brief Clears all internal data of the object
*
*/
void clear();
/**
* \brief Returns the angle of the black diagnonale
*
*/
float getBlackAngle()const;
/**
* \brief Returns the angle of the black diagnonale
*
*/
float getWhiteAngle()const;
/**
* \brief Initializes a 3x3 grid from 9 corner coordinates
*
* All points must be ordered:
* p0 p1 p2
* p3 p4 p5
* p6 p7 p8
*
* \param[in] points vector of points
*
* \return Returns false if the grid could not be initialized
*/
bool init(const std::vector<cv::Point2f> points);
/**
* \brief Returns true if the board is empty
*
*/
bool isEmpty() const;
/**
* \brief Returns all board corners as ordered vector
*
* The left top corner has index 0 and the bottom right
* corner rows*cols-1. All corners which only belong to
* empty cells are returned as NaN.
*/
std::vector<cv::Point2f> getCorners(bool ball=true) const;
/**
* \brief Returns all board corners as ordered vector of KeyPoints
*
* The left top corner has index 0 and the bottom right
* corner rows*cols-1.
*
* \param[in] ball if set to false only non empty points are returned
*
*/
std::vector<cv::KeyPoint> getKeyPoints(bool ball=true) const;
/**
* \brief Returns the centers of the chessboard cells
*
* The left top corner has index 0 and the bottom right
* corner (rows-1)*(cols-1)-1.
*
*/
std::vector<cv::Point2f> getCellCenters() const;
/**
* \brief Returns all cells as mats of four points each describing their corners.
*
* The left top cell has index 0
*
*/
std::vector<cv::Mat> getCells(float shrink_factor = 1.0,bool bwhite=true,bool bblack = true) const;
/**
* \brief Estimates the homography between an ideal board
* and reality based on the already recovered points
*
* \param[in] rect selecting a subset of the already recovered points
* \param[in] field_size The field size of the ideal board
*
*/
cv::Mat estimateHomography(cv::Rect rect,int field_size = DUMMY_FIELD_SIZE)const;
/**
* \brief Estimates the homography between an ideal board
* and reality based on the already recovered points
*
* \param[in] field_size The field size of the ideal board
*
*/
cv::Mat estimateHomography(int field_size = DUMMY_FIELD_SIZE)const;
/**
* \brief Warp image to match ideal checkerboard
*
*/
cv::Mat warpImage(cv::InputArray image)const;
/**
* \brief Returns the size of the board
*
*/
cv::Size getSize() const;
/**
* \brief Returns the number of cols
*
*/
size_t colCount() const;
/**
* \brief Returns the number of rows
*
*/
size_t rowCount() const;
/**
* \brief Returns the inner contour of the board including only valid corners
*
* \info the contour might be non squared if not all points of the board are defined
*
*/
std::vector<cv::Point2f> getContour()const;
/**
* \brief Masks the found board in the given image
*
*/
void maskImage(cv::InputOutputArray img,const cv::Scalar &color=cv::Scalar::all(0))const;
/**
* \brief Grows the board in all direction until no more corners are found in the feature map
*
* \param[in] data CV_32FC1 data of the flann index
* \param[in] flann_index flann index
*
* \returns the number of grows
*/
int grow(const cv::Mat &data,cv::flann::Index &flann_index);
/**
* \brief Validates all corners using guided search based on the given homography
*
* \param[in] data CV_32FC1 data of the flann index
* \param[in] flann_index flann index
* \param[in] h Homography describing the transformation from ideal board to the real one
* \param[in] min_response Min response
*
* \returns the number of valid corners
*/
int validateCorners(const cv::Mat &data,cv::flann::Index &flann_index,const cv::Mat &h,float min_response=0);
/**
* \brief check that no corner is used more than once
*
* \returns Returns false if a corner is used more than once
*/
bool checkUnique()const;
/**
* \brief Returns false if the angles of the contour are smaller than 35°
*
*/
bool validateContour()const;
/**
\brief delete left column of the board
*/
bool shrinkLeft();
/**
\brief delete right column of the board
*/
bool shrinkRight();
/**
\brief shrink first row of the board
*/
bool shrinkTop();
/**
\brief delete last row of the board
*/
bool shrinkBottom();
/**
* \brief Grows the board to the left by adding one column.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growLeft(const cv::Mat &map,cv::flann::Index &flann_index);
void growLeft();
/**
* \brief Grows the board to the top by adding one row.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growTop(const cv::Mat &map,cv::flann::Index &flann_index);
void growTop();
/**
* \brief Grows the board to the right by adding one column.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growRight(const cv::Mat &map,cv::flann::Index &flann_index);
void growRight();
/**
* \brief Grows the board to the bottom by adding one row.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growBottom(const cv::Mat &map,cv::flann::Index &flann_index);
void growBottom();
/**
* \brief Adds one column on the left side
*
* \param[in] points The corner coordinates
*
*/
void addColumnLeft(const std::vector<cv::Point2f> &points);
/**
* \brief Adds one column at the top
*
* \param[in] points The corner coordinates
*
*/
void addRowTop(const std::vector<cv::Point2f> &points);
/**
* \brief Adds one column on the right side
*
* \param[in] points The corner coordinates
*
*/
void addColumnRight(const std::vector<cv::Point2f> &points);
/**
* \brief Adds one row at the bottom
*
* \param[in] points The corner coordinates
*
*/
void addRowBottom(const std::vector<cv::Point2f> &points);
/**
* \brief Rotates the board 90° degrees to the left
*/
void rotateLeft();
/**
* \brief Rotates the board 90° degrees to the right
*/
void rotateRight();
/**
* \brief Flips the board along its local x(width) coordinate direction
*/
void flipVertical();
/**
* \brief Flips the board along its local y(height) coordinate direction
*/
void flipHorizontal();
/**
* \brief Flips and rotates the board so that the angle of
* either the black or white diagonal is bigger than the x
* and y axis of the board and from a right handed
* coordinate system
*/
void normalizeOrientation(bool bblack=true);
/**
* \brief Flips and rotates the board so that the marker
* is normalized
*/
bool normalizeMarkerOrientation();
/**
* \brief Exchanges the stored board with the board stored in other
*/
void swap(Chessboard::Board &other);
bool operator==(const Chessboard::Board& other) const {return rows*cols == other.rows*other.cols;};
bool operator< (const Chessboard::Board& other) const {return rows*cols < other.rows*other.cols;};
bool operator> (const Chessboard::Board& other) const {return rows*cols > other.rows*other.cols;};
bool operator>= (const cv::Size& size)const { return rows*cols >= size.width*size.height; };
/**
* \brief Returns a specific corner
*
* \info raises runtime_error if row col does not exists
*/
cv::Point2f& getCorner(int row,int col);
/**
* \brief Returns true if the cell is empty meaning at least one corner is NaN
*/
bool isCellEmpty(int row,int col);
/**
* \brief Returns the mapping from all corners idx to only valid corners idx
*/
std::map<int,int> getMapping()const;
/**
* \brief Returns true if the cell is black
*
*/
bool isCellBlack(int row,int col)const;
/**
* \brief Returns true if the cell has a round marker at its
* center
*
*/
bool hasCellMarker(int row,int col);
/**
* \brief Detects round markers in the chessboard fields based
* on the given image and the already recoverd board corners
*
* \returns Returns the number of found markes
*
*/
int detectMarkers(cv::InputArray image);
/**
* \brief Calculates the average edge sharpness for the chessboard
*
* \param[in] image The image where the chessboard was detected
* \param[in] rise_distante Rise distance 0.8 means 10% ... 90%
* \param[in] vertical by default only edge response for horiontal lines are calculated
*
* \returns Scalar(sharpness, average min_val, average max_val)
*
* \author aduda@krakenrobotik.de
*/
cv::Scalar calcEdgeSharpness(cv::InputArray image,float rise_distance=0.8,bool vertical=false,cv::OutputArray sharpness=cv::noArray());
/**
* \brief Gets the 3D objects points for the chessboard
* assuming the left top corner is located at the origin. In
* case the board as a marker, the white marker cell is at position zero
*
* \param[in] cell_size Size of one cell
*
* \returns Returns the object points as CV_32FC3
*/
cv::Mat getObjectPoints(float cell_size)const;
/**
* \brief Returns the angle the board is rotated agains the x-axis of the image plane
* \returns Returns the object points as CV_32FC3
*/
float getAngle()const;
/**
* \brief Returns true if the main direction of the board is close to the image x-axis than y-axis
*/
bool isHorizontal()const;
/**
* \brief Updates the search angles
*/
void setAngles(float white,float black);
private:
// stores one cell
// in general a cell is initialized by the Board so that:
// * all corners are always pointing to a valid cv::Point2f
// * depending on the position left,top,right and bottom might be set to NaN
// * A cell is empty if at least one corner is NaN
struct Cell
{
cv::Point2f *top_left,*top_right,*bottom_right,*bottom_left; // corners
Cell *left,*top,*right,*bottom; // neighbouring cells
bool black; // set to true if cell is black
bool marker; // set to true if cell has a round marker in its center
Cell();
bool empty()const; // indicates if the cell is empty (one of its corners has NaN)
int getRow()const;
int getCol()const;
cv::Point2f getCenter()const;
bool isInside(const cv::Point2f &pt)const; // check if point is inside the cell
};
// corners
enum CornerIndex
{
TOP_LEFT,
TOP_RIGHT,
BOTTOM_RIGHT,
BOTTOM_LEFT
};
Cell* getCell(int row,int column); // returns a specific cell
const Cell* getCell(int row,int column)const; // returns a specific cell
void drawEllipses(const std::vector<Ellipse> &ellipses);
// Iterator for iterating over board corners
class PointIter
{
public:
PointIter(Cell *cell,CornerIndex corner_index);
PointIter(const PointIter &other);
void operator=(const PointIter &other);
bool valid() const; // returns if the pointer is pointing to a cell
bool left(bool check_empty=false); // moves one corner to the left or returns false
bool right(bool check_empty=false); // moves one corner to the right or returns false
bool bottom(bool check_empty=false); // moves one corner to the bottom or returns false
bool top(bool check_empty=false); // moves one corner to the top or returns false
bool checkCorner()const; // returns true if the current corner belongs to at least one
// none empty cell
bool isNaN()const; // returns true if the current corner is NaN
const cv::Point2f* operator*() const; // current corner coordinate
cv::Point2f* operator*(); // current corner coordinate
const cv::Point2f* operator->() const; // current corner coordinate
cv::Point2f* operator->(); // current corner coordinate
Cell *getCell(); // current cell
private:
CornerIndex corner_index;
Cell *cell;
};
std::vector<Cell*> cells; // storage for all board cells
std::vector<cv::Point2f*> corners; // storage for all corners
Cell *top_left; // pointer to the top left corner of the board in its local coordinate system
int rows; // number of inner pattern rows
int cols; // number of inner pattern cols
float white_angle,black_angle;
};
public:
/**
* \brief Creates a chessboard corner detectors
*
* \param[in] config Configuration used to detect chessboard corners
*
*/
Chessboard(const Parameters &config = Parameters());
virtual ~Chessboard();
void reconfigure(const Parameters &config = Parameters());
Parameters getPara()const;
/*
* \brief Detects chessboard corners in the given image.
*
* The detectors tries to find all chessboard corners of an imaged
* chessboard and returns them as an ordered vector of KeyPoints.
* Thereby, the left top corner has index 0 and the bottom right
* corner n*m-1.
*
* \param[in] image The image
* \param[out] keypoints The detected corners as a vector of ordered KeyPoints
* \param[in] mask Currently not supported
*
*/
void detect(cv::InputArray image,std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::Mat())override
{cv::Feature2D::detect(image.getMat(),keypoints,mask.getMat());}
virtual void detectAndCompute(cv::InputArray image,cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints,cv::OutputArray descriptors,
bool useProvidedKeyPoints = false)override;
/*
* \brief Detects chessboard corners in the given image.
*
* The detectors tries to find all chessboard corners of an imaged
* chessboard and returns them as an ordered vector of KeyPoints.
* Thereby, the left top corner has index 0 and the bottom right
* corner n*m-1.
*
* \param[in] image The image
* \param[out] keypoints The detected corners as a vector of ordered KeyPoints
* \param[out] feature_maps The feature map generated by LRJT and used to find the corners
* \param[in] mask Currently not supported
*
*/
void detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,const cv::Mat& mask)const;
Chessboard::Board detectImpl(const cv::Mat& image,std::vector<cv::Mat> &feature_maps,const cv::Mat& mask)const;
// define pure virtual methods
virtual int descriptorSize()const override{return 0;};
virtual int descriptorType()const override{return 0;};
virtual void operator()( cv::InputArray image, cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints, cv::OutputArray descriptors, bool useProvidedKeypoints=false )const
{
descriptors.clear();
detectImpl(image.getMat(),keypoints,mask);
if(!useProvidedKeypoints) // suppress compiler warning
return;
return;
}
protected:
virtual void computeImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)const
{
descriptors = cv::Mat();
detectImpl(image,keypoints);
}
// indicates why a board could not be initialized for a certain keypoint
enum BState
{
MISSING_POINTS = 0, // at least 5 points are needed
MISSING_PAIRS = 1, // at least two pairs are needed
WRONG_PAIR_ANGLE = 2, // angle between pairs is too small
WRONG_CONFIGURATION = 3, // point configuration is wrong and does not belong to a board
FOUND_BOARD = 4 // board was found
};
void findKeyPoints(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,
std::vector<std::vector<float> > &angles ,const cv::Mat& mask)const;
cv::Mat buildData(const std::vector<cv::KeyPoint>& keypoints)const;
std::vector<cv::KeyPoint> getInitialPoints(cv::flann::Index &flann_index,const cv::Mat &data,const cv::KeyPoint ¢er,float white_angle,float black_angle, float min_response = 0)const;
BState generateBoards(cv::flann::Index &flann_index,const cv::Mat &data, const cv::KeyPoint ¢er,
float white_angle,float black_angle,float min_response,const cv::Mat &img,
std::vector<Chessboard::Board> &boards)const;
private:
void detectImpl(const cv::Mat&,std::vector<cv::KeyPoint>&, const cv::Mat& mast =cv::Mat())const;
virtual void detectImpl(cv::InputArray image, std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::noArray())const;
private:
Parameters parameters; // storing the configuration of the detector
};
}} // end namespace details and cv
#endif