dls_solver.cpp 59.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2019 Czech Technical University.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//
//     * Neither the name of Czech Technical University nor the
//       names of its contributors may be used to endorse or promote products
//       derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Please contact the author of this library if you have any questions.
// Author: Daniel Barath (barath.daniel@sztaki.mta.hu)
// Modification: Maksym Ivashechkin (ivashmak@cmp.felk.cvut.cz)

#include "../precomp.hpp"
#include "../usac.hpp"
#if defined(HAVE_EIGEN)
#include <Eigen/Eigen>
#elif defined(HAVE_LAPACK)
#include "opencv_lapack.h"
#endif

namespace cv { namespace usac {
// This is the estimator class for estimating a homography matrix between two images. A model estimation method and error calculation method are implemented
class DLSPnPImpl : public DLSPnP {
private:
    const Mat * points_mat, * calib_norm_points_mat, * K_mat;
#if defined(HAVE_LAPACK) || defined(HAVE_EIGEN)
    const Mat &K;
    const float * const calib_norm_points, * const points;
#endif
public:
    explicit DLSPnPImpl (const Mat &points_, const Mat &calib_norm_points_, const Mat &K_) :
        points_mat(&points_), calib_norm_points_mat(&calib_norm_points_), K_mat (&K_)
#if defined(HAVE_LAPACK) || defined(HAVE_EIGEN)
        , K(K_), calib_norm_points((float*)calib_norm_points_.data), points((float*)points_.data)
#endif
        {}
    // return minimal sample size required for non-minimal estimation.
    int getMinimumRequiredSampleSize() const override { return 3; }
    // return maximum number of possible solutions.
    int getMaxNumberOfSolutions () const override { return 27; }
    Ptr<NonMinimalSolver> clone () const override {
        return makePtr<DLSPnPImpl>(*points_mat, *calib_norm_points_mat, *K_mat);
    }
#if defined(HAVE_LAPACK) || defined(HAVE_EIGEN)
    int estimate(const std::vector<int> &sample, int sample_number,
        std::vector<Mat> &models_, const std::vector<double> &/*weights_*/) const override {
        if (sample_number < getMinimumRequiredSampleSize())
            return 0;

        // Estimate the model parameters from the given point sample
        // using weighted fitting if possible.

        // Holds the normalized feature positions cross multiplied with itself
        // i.e. n * n^t. This value is used multiple times so it is efficient to
        // pre-compute it.
        std::vector<Matx33d> normalized_feature_cross(sample_number);
        std::vector<Vec3d> world_points(sample_number);
        const Matx33d eye = Matx33d::eye();

        // The bottom-right symmetric block matrix of inverse(A^T * A). Matrix H from
        // Eq. 25 in the Appendix of the DLS paper.
        Matx33d h_inverse = sample_number * eye;

        // Compute V*W*b with the rotation parameters factored out. This is the
        // translation parameterized by the 9 entries of the rotation matrix.
        Matx<double, 3, 9> translation_factor = Matx<double, 3, 9>::zeros();

        for (int i = 0; i < sample_number; i++) {
            const int idx_world = 5 * sample[i], idx_calib = 3 * sample[i];
            Vec3d normalized_feature_pos(calib_norm_points[idx_calib],
                                         calib_norm_points[idx_calib+1],
                                         calib_norm_points[idx_calib+2]);
            normalized_feature_cross[i] = normalized_feature_pos * normalized_feature_pos.t();
            world_points[i] = Vec3d(points[idx_world + 2], points[idx_world + 3], points[idx_world + 4]);

            h_inverse -= normalized_feature_cross[i];
            translation_factor += (normalized_feature_cross[i] - eye) * leftMultiplyMatrix(world_points[i]);
        }

        const Matx33d h_matrix = h_inverse.inv();
        translation_factor = h_matrix * translation_factor;

        // Compute the cost function J' of Eq. 17 in DLS paper. This is a factorized
        // version where the rotation matrix parameters have been pulled out. The
        // entries to this equation are the coefficients to the cost function which is
        // a quartic in the rotation parameters.
        Matx<double, 9, 9> ls_cost_coefficients = Matx<double, 9, 9>::zeros();
        for (int i = 0; i < sample_number; i++)
            ls_cost_coefficients +=
                    (leftMultiplyMatrix(world_points[i]) + translation_factor).t() *
                    (eye - normalized_feature_cross[i]) *
                    (leftMultiplyMatrix(world_points[i]) + translation_factor);

        // Extract the coefficients of the jacobian (Eq. 18) from the
        // ls_cost_coefficients matrix. The jacobian represent 3 monomials in the
        // rotation parameters. Each entry of the jacobian will be 0 at the roots of
        // the polynomial, so we can arrange a system of polynomials from these
        // equations.
        double f1_coeff[20], f2_coeff[20], f3_coeff[20];
        extractJacobianCoefficients(ls_cost_coefficients.val, f1_coeff, f2_coeff, f3_coeff);

        // We create one equation with random terms that is generally non-zero at the
        // roots of our system.
        RNG rng;
        const double macaulay_term[4] = { 100 * rng.uniform(-1.,1.), 100 * rng.uniform(-1.,1.),
                                          100 * rng.uniform(-1.,1.), 100 * rng.uniform(-1.,1.) };

        // Create Macaulay matrix that will be used to solve our polynonomial system.
        Mat macaulay_matrix = Mat_<double>::zeros(120, 120);
        createMacaulayMatrix(f1_coeff, f2_coeff, f3_coeff, macaulay_term, (double*)macaulay_matrix.data);

        // Via the Schur complement trick, the top-left of the Macaulay matrix
        // contains a multiplication matrix whose eigenvectors correspond to solutions
        // to our system of equations.
        Mat sol;
        if (!solve(macaulay_matrix.colRange(27, 120).rowRange(27, 120),
                   macaulay_matrix.colRange(0 ,  27).rowRange(27, 120), sol, DECOMP_LU))
            return 0;

        const Mat solution_polynomial = macaulay_matrix.colRange(0,27).rowRange(0,27) -
                (macaulay_matrix.colRange(27,120).rowRange(0,27) * sol);

        // Extract eigenvectors of the solution polynomial to obtain the roots which
        // are contained in the entries of the eigenvectors.
#ifdef HAVE_EIGEN
        Eigen::Map<Eigen::Matrix<double, 27, 27>> sol_poly((double*)solution_polynomial.data);
        const Eigen::EigenSolver<Eigen::MatrixXd> eigen_solver(sol_poly);
        const auto &eigen_vectors = eigen_solver.eigenvectors();
        const auto &eigen_values = eigen_solver.eigenvalues();
#else
        int mat_order = 27, info, lda = 27, ldvl = 1, ldvr = 27, lwork = 500;
        double wr[27], wi[27] = {0}; // 27 = mat_order
        std::vector<double> work(lwork), eig_vecs(729);
        char jobvl = 'N', jobvr = 'V'; // only left eigen vectors are computed
        dgeev_(&jobvl, &jobvr, &mat_order, (double*)solution_polynomial.data, &lda, wr, wi, nullptr, &ldvl,
               &eig_vecs[0], &ldvr, &work[0], &lwork, &info);
        if (info != 0) return 0;
#endif
        models_ = std::vector<Mat>(); models_.reserve(3);
        const int max_pts_to_eval = std::min(sample_number, 100);
        std::vector<int> pts_random_shuffle(sample_number);
        for (int i = 0; i < sample_number; i++)
            pts_random_shuffle[i] = i;
        randShuffle(pts_random_shuffle);

        for (int i = 0; i < 27; i++) {
            // If the rotation solutions are real, treat this as a valid candidate
            // rotation.
            // The first entry of the eigenvector should equal 1 according to our
            // polynomial, so we must divide each solution by the first entry.

#ifdef HAVE_EIGEN
            if (eigen_values(i).imag() != 0)
                continue;
            const double eigen_vec_1i = 1 / eigen_vectors(0, i).real();
            const double s1 = eigen_vectors(9, i).real() * eigen_vec_1i,
                         s2 = eigen_vectors(3, i).real() * eigen_vec_1i,
                         s3 = eigen_vectors(1, i).real() * eigen_vec_1i;
#else
            if (wi[i] != 0)
                continue;
            const double eigen_vec_1i = 1 / eig_vecs[mat_order*i];
            const double s1 = eig_vecs[mat_order*i+9] * eigen_vec_1i,
                         s2 = eig_vecs[mat_order*i+3] * eigen_vec_1i,
                         s3 = eig_vecs[mat_order*i+1] * eigen_vec_1i;
#endif
            // Compute the rotation (which is the transpose rotation of our solution)
            // and translation.
            const double qi = s1, qi2 = qi*qi, qj = s2, qj2 = qj*qj, qk = s3, qk2 = qk*qk;
            const double s = 1 / (1 + qi2 + qj2 + qk2);
            const Matx33d rot_mat (1-2*s*(qj2+qk2), 2*s*(qi*qj+qk), 2*s*(qi*qk-qj),
                                   2*s*(qi*qj-qk), 1-2*s*(qi2+qk2), 2*s*(qj*qk+qi),
                                   2*s*(qi*qk+qj), 2*s*(qj*qk-qi), 1-2*s*(qi2+qj2));
            const Matx31d soln_translation = translation_factor * rot_mat.reshape<9,1>();

            // Check that all points are in front of the camera. Discard the solution
            // if this is not the case.
            bool all_points_in_front_of_camera = true;
            const Vec3d r3 (rot_mat(2,0),rot_mat(2,1),rot_mat(2,2));
            const double z = soln_translation(2);
            for (int pt = 0; pt < max_pts_to_eval; pt++) {
                if (r3.dot(world_points[pts_random_shuffle[pt]]) + z < 0) {
                    all_points_in_front_of_camera = false;
                    break;
                }
            }

            if (all_points_in_front_of_camera) {
                Mat model;
                hconcat(Math::rotVec2RotMat(Math::rotMat2RotVec(rot_mat)), soln_translation, model);
                models_.emplace_back(K * model);
            }
        }
        return static_cast<int>(models_.size());
#else
    int estimate(const std::vector<int> &/*sample*/, int /*sample_number*/,
        std::vector<Mat> &/*models_*/, const std::vector<double> &/*weights_*/) const override {
        return 0;
#endif
    }

protected:
#if defined(HAVE_LAPACK) || defined(HAVE_EIGEN)
    const int indices[1968] = {
            0, 35, 83, 118, 120, 121, 154, 155, 174, 203, 219, 238, 241, 242, 274, 275,
            291, 294, 305, 323, 329, 339, 358, 360, 363, 395, 409, 436, 443, 478, 479,
            481, 483, 484, 514, 515, 523, 529, 534, 551, 556, 563, 579, 580, 598, 599,
            602, 604, 605, 634, 635, 641, 643, 649, 651, 654, 662, 665, 671, 676, 683,
            689, 699, 700, 711, 718, 719, 723, 726, 750, 755, 769, 795, 796, 803, 827,
            838, 839, 844, 846, 847, 870, 874, 875, 883, 885, 889, 894, 903, 911, 915,
            916, 923, 939, 940, 947, 952, 958, 959, 965, 967, 968, 990, 994, 1001, 1003,
            1005, 1006, 1009, 1011, 1014, 1022, 1023, 1025, 1026, 1031, 1035, 1036,
            1049, 1059, 1060, 1062, 1067, 1071, 1072, 1079, 1080, 1089, 1115, 1116,
            1163, 1164, 1168, 1198, 1201, 1209, 1210, 1233, 1234, 1235, 1236, 1254,
            1259, 1283, 1284, 1288, 1299, 1317, 1318, 1322, 1330, 1331, 1348, 1353,
            1354, 1355, 1356, 1371, 1374, 1377, 1379, 1385, 1403, 1404, 1408, 1409,
            1419, 1434, 1437, 1438, 1443, 1449, 1452, 1475, 1476, 1479, 1489, 1516,
            1519, 1523, 1524, 1528, 1536, 1558, 1559, 1564, 1570, 1572, 1573, 1593,
            1594, 1595, 1596, 1599, 1603, 1607, 1609, 1614, 1619, 1620, 1631, 1636,
            1639, 1643, 1644, 1648, 1650, 1656, 1659, 1660, 1677, 1678, 1679, 1685,
            1691, 1693, 1694, 1708, 1713, 1714, 1716, 1719, 1721, 1722, 1723, 1727,
            1729, 1731, 1734, 1736, 1737, 1739, 1740, 1742, 1745, 1751, 1756, 1759,
            1764, 1768, 1769, 1770, 1776, 1779, 1780, 1786, 1791, 1794, 1797, 1799,
            1806, 1812, 1815, 1829, 1830, 1835, 1836, 1839, 1849, 1874, 1875, 1876,
            1879, 1883, 1884, 1888, 1894, 1896, 1907, 1918, 1919, 1927, 1933, 1935,
            1936, 1949, 1950, 1953, 1954, 1956, 1959, 1963, 1964, 1965, 1967, 1969,
            1974, 1979, 1980, 1983, 1988, 1991, 1994, 1995, 1996, 1999, 2004, 2008,
            2010, 2014, 2016, 2017, 2019, 2020, 2027, 2032, 2037, 2039, 2048, 2054,
            2056, 2057, 2068, 2069, 2070, 2073, 2079, 2081, 2082, 2083, 2084, 2085,
            2086, 2087, 2091, 2096, 2097, 2099, 2100, 2102, 2103, 2105, 2106, 2108,
            2111, 2114, 2115, 2119, 2129, 2130, 2134, 2136, 2137, 2140, 2142, 2146,
            2147, 2151, 2152, 2154, 2157, 2169, 2178, 2195, 2196, 2213, 2242, 2243,
            2244, 2247, 2248, 2278, 2290, 2298, 2299, 2312, 2313, 2314, 2315, 2316,
            2333, 2334, 2339, 2341, 2362, 2363, 2364, 2367, 2368, 2379, 2396, 2397,
            2398, 2411, 2419, 2420, 2427, 2428, 2432, 2433, 2434, 2436, 2451, 2453,
            2454, 2455, 2457, 2459, 2461, 2465, 2482, 2484, 2487, 2488, 2489, 2499,
            2513, 2514, 2516, 2517, 2532, 2538, 2541, 2555, 2556, 2558, 2559, 2569,
            2573, 2596, 2598, 2599, 2602, 2603, 2604, 2607, 2608, 2612, 2616, 2638,
            2639, 2653, 2659, 2661, 2662, 2672, 2673, 2674, 2676, 2678, 2679, 2680,
            2683, 2687, 2689, 2693, 2694, 2699, 2700, 2701, 2711, 2712, 2716, 2718,
            2719, 2722, 2724, 2727, 2728, 2730, 2732, 2735, 2736, 2739, 2740, 2756,
            2757, 2759, 2774, 2780, 2782, 2783, 2787, 2788, 2792, 2793, 2798, 2799,
            2800, 2801, 2802, 2803, 2807, 2811, 2813, 2815, 2816, 2817, 2819, 2820,
            2821, 2822, 2825, 2831, 2832, 2838, 2839, 2842, 2847, 2849, 2850, 2852,
            2855, 2856, 2860, 2866, 2871, 2873, 2874, 2876, 2877, 2895, 2901, 2904,
            2909, 2910, 2916, 2918, 2919, 2929, 2932, 2933, 2953, 2954, 2955, 2956,
            2958, 2959, 2962, 2964, 2967, 2968, 2972, 2973, 2974, 2976, 2987, 2999,
            3016, 3022, 3024, 3025, 3029, 3030, 3032, 3033, 3038, 3039, 3040, 3043,
            3044, 3045, 3047, 3052, 3053, 3059, 3060, 3061, 3063, 3068, 3071, 3072,
            3073, 3074, 3075, 3078, 3079, 3082, 3087, 3090, 3092, 3093, 3094, 3095,
            3096, 3097, 3100, 3107, 3112, 3116, 3117, 3137, 3143, 3145, 3146, 3147,
            3148, 3149, 3152, 3158, 3160, 3161, 3162, 3164, 3165, 3166, 3167, 3172,
            3175, 3176, 3177, 3180, 3181, 3182, 3183, 3186, 3188, 3192, 3193, 3194,
            3198, 3210, 3212, 3213, 3214, 3215, 3217, 3222, 3226, 3231, 3232, 3233,
            3234, 3236, 3255, 3269, 3270, 3276, 3279, 3289, 3309, 3310, 3314, 3315,
            3316, 3319, 3324, 3328, 3331, 3334, 3336, 3347, 3350, 3359, 3366, 3390,
            3395, 3409, 3429, 3435, 3436, 3443, 3467, 3470, 3478, 3479, 3504, 3509,
            3510, 3518, 3519, 3532, 3533, 3549, 3550, 3553, 3554, 3555, 3558, 3559,
            3562, 3567, 3571, 3572, 3573, 3574, 3576, 3587, 3590, 3637, 3648, 3652,
            3670, 3673, 3677, 3681, 3685, 3691, 3693, 3698, 3749, 3757, 3758, 3770,
            3772, 3789, 3790, 3793, 3794, 3797, 3798, 3800, 3806, 3811, 3812, 3813,
            3814, 3818, 3830, 3888, 3890, 3893, 3920, 3921, 3922, 3925, 3926, 3927,
            3989, 3990, 3999, 4024, 4029, 4030, 4034, 4035, 4039, 4051, 4054, 4056,
            4063, 4067, 4070, 4109, 4118, 4132, 4144, 4149, 4150, 4153, 4154, 4158,
            4171, 4172, 4173, 4174, 4183, 4190, 4237, 4252, 4264, 4270, 4273, 4277,
            4291, 4293, 4298, 4303, 4325, 4354, 4361, 4363, 4369, 4371, 4374, 4382,
            4385, 4391, 4396, 4409, 4419, 4420, 4421, 4429, 4431, 4439, 4442, 4474,
            4475, 4491, 4494, 4505, 4523, 4529, 4539, 4549, 4558, 4590, 4609, 4624,
            4629, 4635, 4636, 4663, 4667, 4670, 4679, 4708, 4713, 4731, 4737, 4739,
            4745, 4769, 4785, 4788, 4789, 4794, 4797, 4827, 4828, 4832, 4855, 4857,
            4861, 4905, 4908, 4909, 4913, 4914, 4916, 4950, 4984, 4989, 4995, 5023,
            5027, 5030, 5067, 5071, 5095, 5098, 5145, 5148, 5153, 5155, 5189, 5224,
            5229, 5230, 5234, 5251, 5254, 5263, 5270, 5308, 5337, 5385, 5388, 5389,
            5394, 5427, 5455, 5505, 5508, 5513, 5572, 5584, 5590, 5593, 5611, 5613,
            5623, 5680, 5684, 5692, 5704, 5707, 5708, 5710, 5712, 5713, 5731, 5733,
            5735, 5737, 5743, 5744, 5790, 5803, 5805, 5823, 5824, 5827, 5829, 5831,
            5835, 5860, 5863, 5864, 5867, 5870, 5872, 5921, 5925, 5926, 5942, 5943,
            5946, 5981, 5982, 5985, 5989, 5991, 5992, 6041, 6062, 6101, 6105, 6109,
            6111, 6184, 6190, 6211, 6223, 6281, 6285, 6286, 6302, 6303, 6306, 6307,
            6309, 6341, 6342, 6344, 6349, 6350, 6351, 6352, 6424, 6429, 6463, 6470,
            6585, 6589, 6644, 6664, 6667, 6668, 6670, 6691, 6697, 6703, 6704, 6825,
            6828, 6904, 6907, 6943, 6944, 7006, 7024, 7026, 7027, 7062, 7063, 7064,
            7088, 7110, 7121, 7123, 7125, 7126, 7131, 7142, 7143, 7145, 7146, 7151,
            7155, 7169, 7180, 7181, 7182, 7187, 7189, 7191, 7192, 7208, 7230, 7241,
            7243, 7245, 7246, 7251, 7262, 7263, 7265, 7266, 7267, 7269, 7271, 7275,
            7289, 7300, 7302, 7304, 7307, 7310, 7311, 7312, 7362, 7376, 7421, 7425,
            7426, 7428, 7504, 7543, 7665, 7726, 7746, 7747, 7781, 7782, 7784, 7785,
            7846, 7864, 7866, 7867, 7901, 7902, 7903, 7904, 7966, 7986, 8021, 8022,
            8025, 8141, 8145, 8201, 8203, 8211, 8222, 8225, 8231, 8249, 8260, 8261,
            8265, 8269, 8271, 8317, 8328, 8332, 8353, 8357, 8361, 8365, 8373, 8378,
            8420, 8427, 8428, 8431, 8432, 8433, 8450, 8451, 8453, 8455, 8457, 8458,
            8459, 8461, 8465, 8480, 8482, 8486, 8487, 8489, 8513, 8514, 8515, 8516,
            8517, 8565, 8583, 8584, 8587, 8589, 8623, 8624, 8630, 8632, 8681, 8685,
            8686, 8702, 8703, 8704, 8706, 8707, 8709, 8742, 8743, 8744, 8750, 8751,
            8752, 8808, 8810, 8840, 8841, 8845, 8846, 8905, 8909, 8912, 8918, 8920,
            8924, 8925, 8927, 8932, 8940, 8941, 8943, 8947, 8948, 8949, 8950, 8952,
            8953, 8954, 8958, 8970, 8971, 8972, 8973, 8974, 8975, 8977, 8984, 8990,
            8992, 8996, 9021, 9036, 9037, 9038, 9039, 9049, 9050, 9053, 9076, 9077,
            9078, 9079, 9080, 9082, 9084, 9086, 9087, 9088, 9092, 9096, 9098, 9119,
            9168, 9201, 9205, 9274, 9291, 9294, 9305, 9329, 9339, 9345, 9349, 9387,
            9391, 9397, 9400, 9402, 9415, 9416, 9418, 9432, 9437, 9455, 9458, 9461,
            9466, 9468, 9473, 9475, 9522, 9524, 9526, 9536, 9546, 9548, 9577, 9581,
            9582, 9585, 9586, 9588, 9614, 9628, 9633, 9639, 9641, 9642, 9643, 9647,
            9651, 9656, 9657, 9659, 9660, 9662, 9665, 9671, 9679, 9689, 9690, 9696,
            9700, 9701, 9706, 9708, 9709, 9711, 9714, 9717, 9751, 9752, 9757, 9758,
            9760, 9767, 9768, 9770, 9778, 9780, 9781, 9792, 9797, 9798, 9800, 9801,
            9805, 9806, 9810, 9812, 9815, 9818, 9835, 9836, 9869, 9884, 9885, 9887,
            9900, 9903, 9904, 9907, 9908, 9909, 9910, 9914, 9930, 9931, 9934, 9937,
            9943, 9944, 9950, 9952, 9986, 9987, 9991, 9997, 10000, 10002, 10004, 10006,
            10012, 10015, 10016, 10018, 10026, 10028, 10032, 10033, 10037, 10053, 10055,
            10057, 10058, 10062, 10066, 10073, 10075, 10096, 10109, 10110, 10113, 10119,
            10123, 10124, 10125, 10127, 10139, 10140, 10143, 10147, 10148, 10149, 10150,
            10151, 10154, 10155, 10159, 10170, 10171, 10174, 10176, 10177, 10180, 10184,
            10187, 10190, 10192, 10197, 10225, 10229, 10231, 10232, 10237, 10238, 10240,
            10244, 10245, 10247, 10250, 10252, 10258, 10260, 10261, 10263, 10268, 10272,
            10273, 10274, 10277, 10278, 10280, 10286, 10290, 10292, 10293, 10294, 10295,
            10297, 10298, 10312, 10315, 10316, 10351, 10357, 10360, 10364, 10368, 10372,
            10378, 10388, 10392, 10393, 10397, 10401, 10405, 10413, 10415, 10417, 10418,
            10435, 10462, 10471, 10472, 10473, 10477, 10478, 10479, 10480, 10483, 10487,
            10490, 10493, 10498, 10499, 10500, 10501, 10511, 10512, 10517, 10518, 10519,
            10520, 10522, 10526, 10527, 10530, 10532, 10535, 10536, 10538, 10540, 10555,
            10556, 10557, 10587, 10591, 10597, 10600, 10602, 10608, 10615, 10616, 10618,
            10632, 10637, 10641, 10645, 10655, 10658, 10666, 10673, 10675, 10711, 10717,
            10720, 10724, 10732, 10738, 10747, 10748, 10750, 10752, 10753, 10757, 10771,
            10773, 10775, 10777, 10778, 10784, 10795, 10827, 10840, 10842, 10855, 10856,
            10872, 10895, 10901, 10905, 10906, 10908, 10913, 10943, 10947, 10948, 10951,
            10952, 10957, 10958, 10960, 10961, 10962, 10967, 10970, 10975, 10976, 10977,
            10978, 10980, 10981, 10982, 10992, 10997, 10998, 11000, 11006, 11010, 11012,
            11015, 11018, 11026, 11031, 11033, 11034, 11035, 11036, 11057, 11068, 11069,
            11081, 11082, 11084, 11085, 11086, 11087, 11096, 11097, 11100, 11102, 11103,
            11106, 11108, 11114, 11130, 11134, 11137, 11141, 11142, 11146, 11148, 11149,
            11151, 11152, 11154, 11177, 11188, 11189, 11201, 11202, 11204, 11205, 11206,
            11207, 11216, 11217, 11220, 11222, 11223, 11226, 11227, 11228, 11229, 11230,
            11234, 11250, 11251, 11254, 11257, 11262, 11264, 11266, 11270, 11271, 11272,
            11274, 11311, 11317, 11320, 11328, 11338, 11352, 11357, 11361, 11365, 11375,
            11378, 11395, 11426, 11427, 11440, 11442, 11444, 11446, 11452, 11455, 11456,
            11466, 11468, 11472, 11473, 11493, 11495, 11497, 11501, 11502, 11506, 11508,
            11513, 11543, 11547, 11548, 11552, 11558, 11560, 11561, 11562, 11567, 11575,
            11576, 11577, 11580, 11581, 11582, 11592, 11598, 11610, 11612, 11615, 11621,
            11626, 11628, 11629, 11631, 11633, 11634, 11636, 11682, 11684, 11686, 11696,
            11706, 11707, 11708, 11710, 11731, 11737, 11741, 11742, 11744, 11746, 11748,
            11788, 11801, 11802, 11807, 11816, 11817, 11820, 11822, 11850, 11861, 11865,
            11866, 11868, 11869, 11871, 11874, 11922, 11924, 11926, 11936, 11944, 11946,
            11947, 11948, 11950, 11971, 11977, 11982, 11983, 11984, 11986, 12051, 12065,
            12089, 12105, 12109, 12157, 12158, 12159, 12168, 12170, 12173, 12197, 12198,
            12199, 12200, 12201, 12202, 12205, 12206, 12207, 12212, 12216, 12218, 12277,
            12278, 12288, 12290, 12317, 12318, 12320, 12321, 12325, 12326, 12332, 12338,
            12397, 12408, 12437, 12441, 12445, 12458, 12491, 12508, 12513, 12514, 12516,
            12531, 12534, 12537, 12539, 12545, 12564, 12568, 12569, 12579, 12588, 12589,
            12594, 12597, 12620, 12627, 12628, 12632, 12633, 12651, 12653, 12655, 12657,
            12659, 12661, 12665, 12682, 12687, 12689, 12708, 12709, 12713, 12714, 12716,
            12717, 12747, 12748, 12751, 12752, 12770, 12775, 12777, 12778, 12781, 12800,
            12806, 12828, 12829, 12833, 12834, 12835, 12836, 12867, 12871, 12888, 12895,
            12898, 12921, 12925, 12948, 12953, 12955, 12996, 13008, 13010, 13013, 13040,
            13041, 13042, 13044, 13045, 13046, 13047, 13048, 13106, 13107, 13120, 13122,
            13124, 13126, 13132, 13135, 13136, 13146, 13147, 13148, 13150, 13152, 13153,
            13171, 13173, 13175, 13177, 13182, 13184, 13186, 13193, 13207, 13230, 13234,
            13243, 13245, 13249, 13254, 13263, 13267, 13269, 13271, 13275, 13276, 13299,
            13300, 13304, 13307, 13310, 13312, 13319, 13338, 13355, 13356, 13370, 13373,
            13400, 13402, 13403, 13404, 13406, 13407, 13408, 13438, 13459, 13471, 13472,
            13473, 13474, 13476, 13490, 13493, 13494, 13498, 13499, 13501, 13520, 13522,
            13524, 13526, 13527, 13528, 13539, 13555, 13556, 13557, 13591, 13592, 13593,
            13608, 13610, 13613, 13618, 13619, 13621, 13640, 13641, 13642, 13645, 13646,
            13647, 13675, 13676, 13677, 13711, 13712, 13728, 13730, 13738, 13741, 13760,
            13761, 13765, 13766, 13795, 13796, 13831, 13848, 13858, 13881, 13885, 13915,
            13944, 13949, 13950, 13957, 13958, 13959, 13970, 13972, 13973, 13993, 13994,
            13995, 13997, 13998, 13999, 14000, 14002, 14006, 14007, 14012, 14013, 14014,
            14016, 14018, 14027, 14069, 14077, 14078, 14088, 14090, 14092, 14113, 14114,
            14117, 14118, 14120, 14121, 14125, 14126, 14132, 14133, 14134, 14138, 14187,
            14188, 14191, 14192, 14208, 14210, 14215, 14217, 14218, 14221, 14240, 14241,
            14245, 14246, 14273, 14274, 14275, 14276, 14307, 14311, 14328, 14335, 14338,
            14361, 14365, 14393, 14395
    };
    void createMacaulayMatrix(const double a[20], const double b[20],
            const double c[20], const double u[4], double * macaulay_matrix) const {
        // The matrix is very large (14400 elements!) and sparse (1968 non-zero
        // elements) so we load it from pre-computed values calculated in matlab.

        const double values[1968] = {
                u[0], a[0], b[0], c[0], u[3], u[0], a[0], a[9], b[0], b[9], c[0], c[9],
                u[3], u[0], a[9], a[13], a[0], b[9], b[0], b[13], c[0], c[9], c[13], u[2],
                u[0], a[10], a[0], b[0], b[10], c[10], c[0], u[2], u[3], u[0], a[10], a[4],
                a[0], a[9], b[10], b[0], b[9], b[4], c[10], c[0], c[4], c[9], u[2], u[3],
                u[0], a[4], a[11], a[0], a[9], a[13], a[10], b[4], b[0], b[10], b[9], b[13],
                b[11], c[10], c[4], c[9], c[0], c[11], c[13], u[2], u[0], a[0], a[14],
                a[10], b[0], b[10], b[14], c[0], c[14], c[10], u[2], u[3], u[0], a[9],
                a[14], a[5], a[10], a[0], a[4], b[14], b[0], b[10], b[9], b[4], b[5], c[14],
                c[10], c[9], c[0], c[5], c[4], u[2], u[3], u[0], a[13], a[5], a[10], a[4],
                a[9], a[0], a[11], a[14], b[5], b[10], b[9], b[14], b[0], b[4], b[13],
                b[11], c[14], c[5], c[4], c[0], c[13], c[10], c[9], c[11], u[1], u[0], a[8],
                a[0], b[8], b[0], c[0], c[8], u[1], u[3], u[0], a[0], a[8], a[3], a[9],
                b[8], b[0], b[3], b[9], c[9], c[8], c[0], c[3], u[1], u[3], u[0], a[0],
                a[9], a[3], a[7], a[13], a[8], b[3], b[0], b[9], b[8], b[7], b[13], c[13],
                c[8], c[3], c[0], c[9], c[7], u[1], u[2], u[0], a[2], a[10], a[0], a[8],
                b[8], b[0], b[2], b[10], c[10], c[0], c[2], c[8], u[1], u[2], u[3], u[0],
                a[10], a[2], a[16], a[4], a[9], a[8], a[0], a[3], b[2], b[10], b[0], b[8],
                b[3], b[9], b[16], b[4], c[4], c[0], c[9], c[2], c[8], c[10], c[16], c[3],
                u[1], u[2], u[3], u[0], a[10], a[4], a[16], a[11], a[13], a[8], a[0], a[3],
                a[9], a[7], a[2], b[16], b[0], b[10], b[4], b[9], b[8], b[2], b[3], b[7],
                b[13], b[11], c[11], c[2], c[9], c[13], c[16], c[3], c[0], c[8], c[10],
                c[4], c[7], u[1], u[2], u[0], a[0], a[8], a[17], a[14], a[10], a[2], b[0],
                b[8], b[2], b[10], b[17], b[14], c[14], c[0], c[10], c[8], c[17], c[2],
                u[1], u[2], u[3], u[0], a[9], a[3], a[14], a[17], a[5], a[4], a[2], a[0],
                a[8], a[10], a[16], b[17], b[14], b[10], b[8], b[0], b[2], b[9], b[3],
                b[16], b[4], b[5], c[5], c[10], c[9], c[4], c[0], c[17], c[2], c[3], c[8],
                c[14], c[16], u[1], u[2], u[3], u[0], a[14], a[13], a[7], a[5], a[11], a[2],
                a[10], a[16], a[9], a[3], a[8], a[4], a[17], b[10], b[14], b[5], b[4], b[2],
                b[3], b[17], b[8], b[9], b[16], b[13], b[7], b[11], c[17], c[4], c[13],
                c[11], c[9], c[16], c[8], c[10], c[7], c[2], c[3], c[14], c[5], u[1], u[0],
                a[12], a[8], a[0], b[0], b[12], b[8], c[0], c[8], c[12], u[1], u[3], u[0],
                a[0], a[8], a[12], a[18], a[3], a[9], b[12], b[8], b[0], b[9], b[18], b[3],
                c[9], c[3], c[12], c[0], c[8], c[18], u[1], u[3], u[0], a[0], a[8], a[9],
                a[3], a[18], a[7], a[12], a[13], b[18], b[0], b[8], b[3], b[9], b[12],
                b[13], b[7], c[13], c[7], c[12], c[18], c[0], c[8], c[9], c[3], u[1], u[2],
                u[0], a[1], a[2], a[0], a[8], a[12], a[10], b[12], b[0], b[8], b[10], b[1],
                b[2], c[10], c[2], c[0], c[8], c[1], c[12], u[1], u[2], u[3], u[0], a[10],
                a[2], a[1], a[16], a[9], a[3], a[0], a[12], a[8], a[18], a[4], b[1], b[2],
                b[8], b[10], b[12], b[0], b[18], b[9], b[3], b[4], b[16], c[4], c[16], c[8],
                c[9], c[0], c[3], c[1], c[12], c[10], c[2], c[18], u[1], u[2], u[3], u[0],
                a[10], a[2], a[4], a[16], a[13], a[7], a[9], a[12], a[8], a[18], a[3], a[1],
                a[11], b[10], b[8], b[2], b[16], b[3], b[4], b[12], b[1], b[18], b[9],
                b[13], b[7], b[11], c[11], c[1], c[3], c[13], c[9], c[7], c[18], c[8],
                c[12], c[10], c[2], c[4], c[16], u[1], u[2], u[0], a[8], a[12], a[17],
                a[10], a[2], a[1], a[0], a[14], b[0], b[8], b[12], b[1], b[10], b[2], b[14],
                b[17], c[14], c[17], c[10], c[0], c[8], c[2], c[12], c[1], u[1], u[2], u[3],
                u[0], a[3], a[18], a[14], a[17], a[4], a[16], a[10], a[1], a[8], a[12],
                a[2], a[9], a[5], b[17], b[2], b[14], b[12], b[8], b[1], b[10], b[9], b[3],
                b[18], b[4], b[16], b[5], c[5], c[2], c[4], c[9], c[3], c[10], c[16], c[8],
                c[1], c[18], c[12], c[14], c[17], u[1], u[2], u[3], u[0], a[14], a[17],
                a[7], a[5], a[11], a[4], a[1], a[2], a[3], a[18], a[12], a[16], a[13],
                b[14], b[2], b[17], b[16], b[5], b[1], b[18], b[12], b[3], b[4], b[13],
                b[7], b[11], c[16], c[11], c[13], c[7], c[4], c[3], c[12], c[2], c[1],
                c[18], c[14], c[17], c[5], u[2], a[10], a[2], a[6], a[14], a[17], b[8],
                b[0], b[10], b[2], b[17], b[14], b[6], c[6], c[0], c[10], c[14], c[2], c[8],
                c[17], u[2], a[10], a[6], a[14], b[0], b[10], b[14], b[6], c[10], c[0],
                c[6], c[14], u[2], a[2], a[1], a[14], a[17], a[10], a[6], b[12], b[8],
                b[10], b[2], b[1], b[14], b[17], b[6], c[6], c[8], c[14], c[10], c[2],
                c[17], c[1], c[12], a[17], a[6], a[1], b[19], b[1], b[17], b[6], c[6],
                c[19], c[1], c[17], a[1], a[14], a[17], a[6], a[2], b[19], b[12], b[2],
                b[1], b[14], b[17], b[6], c[6], c[12], c[17], c[2], c[1], c[14], c[19],
                a[8], a[12], a[19], b[12], b[8], b[19], c[8], c[12], c[19], a[14], a[17],
                a[6], b[8], b[2], b[10], b[14], b[17], b[6], c[10], c[14], c[6], c[8],
                c[17], c[2], a[17], a[6], a[14], b[12], b[1], b[2], b[14], b[17], b[6],
                c[2], c[6], c[14], c[17], c[12], c[1], a[6], a[17], b[19], b[1], b[17],
                b[6], c[1], c[17], c[6], c[19], u[3], a[11], a[9], a[13], a[15], a[4],
                b[11], b[9], b[4], b[13], b[15], c[4], c[11], c[13], c[0], c[10], c[9],
                c[15], u[3], a[13], a[15], a[9], b[13], b[9], b[15], c[9], c[13], c[0],
                c[15], a[14], a[6], b[0], b[10], b[14], b[6], c[0], c[14], c[10], c[6],
                a[13], a[15], a[7], b[13], b[15], b[7], c[7], c[8], c[9], c[3], c[13],
                c[15], a[13], a[7], a[15], b[13], b[7], b[15], c[12], c[3], c[18], c[13],
                c[7], c[15], a[6], b[10], b[14], b[6], c[10], c[6], c[14], a[7], a[15],
                b[7], b[15], c[19], c[18], c[7], c[15], a[6], b[2], b[17], b[14], b[6],
                c[14], c[6], c[2], c[17], a[15], b[15], c[3], c[13], c[7], c[15], a[15],
                b[15], c[18], c[7], c[15], a[6], b[1], b[17], b[6], c[17], c[6], c[1], a[6],
                a[17], a[5], b[18], b[1], b[17], b[16], b[6], b[5], c[16], c[5], c[6],
                c[17], c[18], c[1], a[5], a[6], a[14], b[14], b[9], b[10], b[4], b[6], b[5],
                c[6], c[9], c[10], c[5], c[4], c[14], a[11], a[15], a[13], b[11], b[15],
                b[13], c[4], c[13], c[14], c[5], c[11], c[15], a[15], b[15], c[13], c[4],
                c[11], c[15], b[17], b[6], c[6], c[17], a[5], a[11], a[4], b[5], b[11],
                b[4], b[13], b[15], c[14], c[4], c[13], c[6], c[15], c[5], c[11], b[14],
                b[6], c[14], c[6], c[13], c[15], a[6], b[16], b[17], b[6], b[5], c[5], c[6],
                c[16], c[17], c[7], c[15], b[5], b[6], c[5], c[6], a[6], b[11], b[6], b[5],
                c[6], c[11], c[5], u[3], a[15], a[4], a[11], a[13], a[9], a[5], b[4], b[13],
                b[5], b[9], b[11], b[15], c[5], c[11], c[10], c[9], c[15], c[14], c[4],
                c[13], u[2], a[11], a[14], a[5], a[4], a[10], a[6], b[14], b[4], b[6],
                b[10], b[9], b[13], b[5], b[11], c[6], c[5], c[10], c[9], c[11], c[13],
                c[14], c[4], a[15], b[15], c[7], c[16], c[15], c[11], b[6], c[6], c[15],
                a[11], b[11], b[15], c[5], c[11], c[15], c[6], a[5], b[15], b[5], b[11],
                c[6], c[5], c[15], c[11], a[15], b[15], c[11], c[15], c[5], c[15], c[11],
                a[13], a[15], a[11], b[13], b[11], b[15], c[11], c[15], c[9], c[10], c[4],
                c[13], a[1], a[17], a[19], b[19], b[1], b[17], c[17], c[19], c[1], u[1],
                a[8], a[12], a[9], a[3], a[18], a[13], a[19], a[7], b[8], b[12], b[9],
                b[18], b[3], b[19], b[13], b[7], c[13], c[7], c[19], c[8], c[12], c[9],
                c[3], c[18], a[6], b[6], b[4], b[14], b[5], c[4], c[14], c[5], c[6], a[6],
                a[5], a[14], b[6], b[5], b[13], b[14], b[4], b[11], c[14], c[13], c[4],
                c[11], c[6], c[5], a[12], a[19], b[19], b[12], c[12], c[19], u[2], a[16],
                a[6], a[5], a[14], a[2], a[1], a[17], a[4], b[17], b[6], b[1], b[12], b[2],
                b[18], b[3], b[14], b[4], b[16], b[5], c[17], c[3], c[5], c[4], c[16],
                c[14], c[2], c[12], c[18], c[1], c[6], u[1], a[1], a[0], a[8], a[12], a[19],
                a[10], a[2], b[19], b[0], b[8], b[12], b[10], b[2], b[1], c[10], c[2], c[1],
                c[8], c[12], c[0], c[19], a[19], b[19], c[19], a[15], a[13], b[15], b[13],
                c[13], c[15], c[0], c[9], a[16], a[11], a[15], a[7], a[18], b[16], b[18],
                b[11], b[7], b[15], c[7], c[15], c[19], c[18], c[1], c[16], c[11], a[11],
                a[15], a[7], b[11], b[7], b[15], c[15], c[16], c[7], c[17], c[11], c[5],
                u[3], a[4], a[11], a[15], a[3], a[9], a[7], a[13], a[16], b[9], b[4], b[11],
                b[13], b[3], b[16], b[7], b[15], c[16], c[13], c[15], c[7], c[8], c[9],
                c[10], c[2], c[3], c[4], c[11], a[2], a[1], a[3], a[18], a[12], a[19], a[4],
                a[16], b[2], b[19], b[1], b[12], b[3], b[18], b[16], b[4], c[4], c[16],
                c[19], c[18], c[12], c[3], c[2], c[1], a[5], a[14], a[17], a[6], b[6],
                b[17], b[3], b[2], b[14], b[16], b[4], b[5], c[6], c[4], c[5], c[14], c[3],
                c[2], c[16], c[17], u[1], a[17], a[5], a[11], a[16], a[1], a[18], a[19],
                a[7], b[17], b[1], b[5], b[19], b[18], b[16], b[7], b[11], c[7], c[16],
                c[18], c[11], c[19], c[1], c[17], c[5], u[2], a[4], a[16], a[6], a[5],
                a[17], a[10], a[2], a[14], b[6], b[14], b[2], b[8], b[10], b[3], b[9],
                b[17], b[4], b[16], b[5], c[14], c[9], c[4], c[5], c[10], c[17], c[8],
                c[16], c[3], c[2], c[6], u[1], a[18], a[14], a[17], a[4], a[16], a[2],
                a[12], a[19], a[1], a[5], a[3], b[14], b[1], b[17], b[19], b[12], b[2],
                b[3], b[18], b[4], b[16], b[5], c[5], c[1], c[16], c[3], c[18], c[2], c[12],
                c[4], c[19], c[14], c[17], a[17], a[16], a[1], a[19], a[5], a[18], b[17],
                b[19], b[1], b[18], b[16], b[5], c[5], c[18], c[1], c[19], c[16], c[17],
                u[1], a[10], a[2], a[1], a[9], a[3], a[18], a[8], a[19], a[12], a[4], a[16],
                b[10], b[1], b[12], b[2], b[19], b[8], b[9], b[3], b[18], b[4], b[16], c[4],
                c[16], c[12], c[3], c[8], c[18], c[9], c[19], c[10], c[2], c[1], a[1],
                a[16], a[7], a[18], a[19], a[11], b[1], b[19], b[16], b[18], b[7], b[11],
                c[11], c[18], c[7], c[19], c[1], c[16], a[6], a[5], a[17], a[1], a[16],
                b[6], b[19], b[1], b[18], b[17], b[16], b[5], c[18], c[16], c[17], c[1],
                c[5], c[19], c[6], a[11], a[15], a[7], b[11], b[7], b[15], c[15], c[18],
                c[1], c[7], c[16], c[11], u[1], a[2], a[1], a[4], a[16], a[13], a[7], a[3],
                a[19], a[12], a[18], a[11], b[2], b[12], b[1], b[4], b[18], b[16], b[19],
                b[3], b[13], b[7], b[11], c[11], c[18], c[7], c[3], c[13], c[12], c[19],
                c[2], c[1], c[4], c[16], u[3], a[5], a[15], a[16], a[4], a[13], a[7], a[3],
                a[11], b[4], b[5], b[11], b[16], b[7], b[3], b[13], b[15], c[11], c[15],
                c[13], c[2], c[3], c[4], c[14], c[17], c[16], c[7], c[5], u[2], a[6], a[11],
                a[17], a[14], a[4], a[16], a[2], a[5], b[14], b[6], b[5], b[17], b[16],
                b[2], b[3], b[4], b[7], b[13], b[11], c[5], c[13], c[11], c[4], c[2], c[3],
                c[14], c[7], c[17], c[16], c[6], a[1], a[18], a[19], a[16], b[1], b[19],
                b[18], b[16], c[16], c[19], c[18], c[1], u[3], a[5], a[11], a[16], a[7],
                a[18], a[15], b[5], b[16], b[18], b[7], b[11], b[15], c[15], c[11], c[7],
                c[1], c[18], c[16], c[17], c[5], u[3], a[4], a[16], a[11], a[15], a[13],
                a[18], a[3], a[7], b[4], b[3], b[16], b[7], b[11], b[18], b[13], b[15],
                c[7], c[15], c[13], c[12], c[3], c[2], c[1], c[18], c[4], c[16], c[11],
                a[5], a[11], a[16], b[5], b[16], b[7], b[11], b[15], c[15], c[11], c[17],
                c[16], c[7], c[5], c[6], a[11], a[7], a[13], a[15], b[13], b[11], b[15],
                b[7], c[15], c[3], c[2], c[13], c[4], c[16], c[7], c[11], a[6], a[5], a[17],
                b[6], b[7], b[17], b[16], b[5], b[11], c[11], c[5], c[17], c[7], c[16],
                c[6], a[15], b[15], c[15], c[9], c[13], a[8], a[12], a[19], a[10], a[2],
                a[1], b[8], b[12], b[19], b[2], b[10], b[1], c[10], c[2], c[1], c[12],
                c[19], c[8], a[12], a[19], a[2], a[1], b[12], b[19], b[1], b[2], c[2], c[1],
                c[19], c[12], a[19], a[1], b[19], b[1], c[1], c[19], u[3], a[9], a[13],
                a[7], a[15], a[3], b[7], b[9], b[13], b[3], b[15], c[15], c[3], c[7], c[0],
                c[8], c[9], c[13], u[3], a[9], a[3], a[13], a[7], a[18], a[15], b[9], b[3],
                b[7], b[13], b[18], b[15], c[15], c[18], c[8], c[12], c[9], c[3], c[13],
                c[7], a[3], a[18], a[13], a[7], a[15], b[3], b[18], b[13], b[7], b[15],
                c[15], c[12], c[19], c[3], c[18], c[13], c[7], a[18], a[7], a[15], b[18],
                b[7], b[15], c[15], c[19], c[18], c[7], a[19], a[0], a[8], a[12], b[8],
                b[0], b[12], b[19], c[0], c[8], c[12], c[19], u[2], a[6], a[5], a[17],
                a[16], a[1], a[11], b[6], b[17], b[1], b[18], b[16], b[7], b[5], b[11],
                c[7], c[11], c[5], c[16], c[1], c[18], c[17], c[6], u[2], a[4], a[6], a[14],
                a[10], a[5], b[6], b[10], b[0], b[9], b[14], b[4], b[5], c[6], c[14], c[0],
                c[4], c[9], c[10], c[5], u[1], a[19], a[12], a[0], a[8], b[0], b[8], b[19],
                b[12], c[0], c[8], c[12], c[19], u[1], a[0], a[8], a[12], a[19], a[18],
                a[9], a[3], b[19], b[0], b[12], b[8], b[9], b[3], b[18], c[9], c[3], c[18],
                c[19], c[0], c[8], c[12], a[8], a[12], a[19], a[9], a[3], a[18], b[8],
                b[19], b[12], b[3], b[9], b[18], c[9], c[3], c[18], c[8], c[12], c[19],
                a[12], a[19], a[3], a[18], b[12], b[19], b[18], b[3], c[3], c[18], c[12],
                c[19], a[19], a[18], b[19], b[18], c[18], c[19], u[1], a[12], a[19], a[10],
                a[2], a[1], a[14], a[8], a[17], b[8], b[12], b[19], b[10], b[2], b[1],
                b[14], b[17], c[14], c[17], c[2], c[8], c[12], c[1], c[10], c[19], a[19],
                a[2], a[1], a[14], a[17], a[12], b[12], b[19], b[2], b[1], b[17], b[14],
                c[14], c[17], c[1], c[12], c[19], c[2], a[12], a[19], a[3], a[18], a[13],
                a[7], b[12], b[19], b[3], b[18], b[7], b[13], c[13], c[7], c[12], c[19],
                c[3], c[18], a[19], a[18], a[7], b[19], b[18], b[7], c[7], c[19], c[18]
        };
        for (int i = 0; i < 1968; i++)
            macaulay_matrix[indices[i]] = values[i];
    }
#endif

    // Transforms a 3 - vector in a 3x9 matrix such that :
    // R * v = leftMultiplyMatrix(v) * vec(R)
    // Where R is a rotation matrix and vec(R) converts R to a 9x1 vector.
    Matx<double, 3, 9> leftMultiplyMatrix(const Vec3d& v) const {
        Matx<double, 3, 9> left_mult_mat = Matx<double, 3, 9>::zeros();
        left_mult_mat(0,0) = v[0]; left_mult_mat(0,1) = v[1]; left_mult_mat(0,2) = v[2];
        left_mult_mat(1,3) = v[0]; left_mult_mat(1,4) = v[1]; left_mult_mat(1,5) = v[2];
        left_mult_mat(2,6) = v[0]; left_mult_mat(2,7) = v[1]; left_mult_mat(2,8) = v[2];
        return left_mult_mat;
    }

    // Extracts the coefficients of the Jacobians of the LS cost function (which is
    // parameterized by the 3 rotation coefficients s1, s2, s3).
    void extractJacobianCoefficients(const double * const D,
            double f1_coeff[20], double f2_coeff[20], double f3_coeff[20]) const {
        f1_coeff[0] =
                2 * D[5] - 2 * D[7] + 2 * D[41] - 2 * D[43] + 2 * D[45] +
                2 * D[49] + 2 * D[53] - 2 * D[63] - 2 * D[67] - 2 * D[71] +
                2 * D[77] - 2 * D[79];             // constant term
        f1_coeff[1] =
                (6 * D[1] + 6 * D[3] + 6 * D[9] - 6 * D[13] - 6 * D[17] +
                 6 * D[27] - 6 * D[31] - 6 * D[35] - 6 * D[37] - 6 * D[39] -
                 6 * D[73] - 6 * D[75]);           // s1^2  * s2
        f1_coeff[2] =
                (4 * D[6] - 4 * D[2] + 8 * D[14] - 8 * D[16] - 4 * D[18] +
                 4 * D[22] + 4 * D[26] + 8 * D[32] - 8 * D[34] + 4 * D[38] -
                 4 * D[42] + 8 * D[46] + 8 * D[48] + 4 * D[54] - 4 * D[58] -
                 4 * D[62] - 8 * D[64] - 8 * D[66] + 4 * D[74] -
                 4 * D[78]);                         // s1 * s2
        f1_coeff[3] =
                (4 * D[1] - 4 * D[3] + 4 * D[9] - 4 * D[13] - 4 * D[17] +
                 8 * D[23] - 8 * D[25] - 4 * D[27] + 4 * D[31] + 4 * D[35] -
                 4 * D[37] + 4 * D[39] + 8 * D[47] + 8 * D[51] + 8 * D[59] -
                 8 * D[61] - 8 * D[65] - 8 * D[69] - 4 * D[73] +
                 4 * D[75]);                         // s1 * s3
        f1_coeff[4] = (8 * D[10] - 8 * D[20] - 8 * D[30] + 8 * D[50] +
                       8 * D[60] - 8 * D[70]);  // s2 * s3
        f1_coeff[5] =
                (4 * D[14] - 2 * D[6] - 2 * D[2] + 4 * D[16] - 2 * D[18] +
                 2 * D[22] - 2 * D[26] + 4 * D[32] + 4 * D[34] + 2 * D[38] +
                 2 * D[42] + 4 * D[46] + 4 * D[48] - 2 * D[54] + 2 * D[58] -
                 2 * D[62] + 4 * D[64] + 4 * D[66] - 2 * D[74] -
                 2 * D[78]);                         // s2^2 * s3
        f1_coeff[6] = (2 * D[13] - 2 * D[3] - 2 * D[9] - 2 * D[1] -
                       2 * D[17] - 2 * D[27] + 2 * D[31] - 2 * D[35] +
                       2 * D[37] + 2 * D[39] - 2 * D[73] - 2 * D[75]);  // s2^3
        f1_coeff[7] =
                (4 * D[8] - 4 * D[0] + 8 * D[20] + 8 * D[24] + 4 * D[40] +
                 8 * D[56] + 8 * D[60] + 4 * D[72] - 4 * D[80]);  // s1 * s3^2
        f1_coeff[8] =
                (4 * D[0] - 4 * D[40] - 4 * D[44] + 8 * D[50] - 8 * D[52] -
                 8 * D[68] + 8 * D[70] - 4 * D[76] - 4 * D[80]);  // s1
        f1_coeff[9] = (2 * D[2] + 2 * D[6] + 4 * D[14] - 4 * D[16] +
                       2 * D[18] + 2 * D[22] + 2 * D[26] - 4 * D[32] +
                       4 * D[34] + 2 * D[38] + 2 * D[42] + 4 * D[46] -
                       4 * D[48] + 2 * D[54] + 2 * D[58] + 2 * D[62] -
                       4 * D[64] + 4 * D[66] + 2 * D[74] + 2 * D[78]);   // s3
        f1_coeff[10] = (2 * D[1] + 2 * D[3] + 2 * D[9] + 2 * D[13] +
                        2 * D[17] - 4 * D[23] + 4 * D[25] + 2 * D[27] +
                        2 * D[31] + 2 * D[35] + 2 * D[37] + 2 * D[39] -
                        4 * D[47] + 4 * D[51] + 4 * D[59] - 4 * D[61] +
                        4 * D[65] - 4 * D[69] + 2 * D[73] + 2 * D[75]);  // s2
        f1_coeff[11] =
                (2 * D[17] - 2 * D[3] - 2 * D[9] - 2 * D[13] - 2 * D[1] +
                 4 * D[23] + 4 * D[25] - 2 * D[27] - 2 * D[31] + 2 * D[35] -
                 2 * D[37] - 2 * D[39] + 4 * D[47] + 4 * D[51] + 4 * D[59] +
                 4 * D[61] + 4 * D[65] + 4 * D[69] + 2 * D[73] +
                 2 * D[75]);                                            // s2 * s3^2
        f1_coeff[12] =
                (6 * D[5] - 6 * D[7] - 6 * D[41] + 6 * D[43] + 6 * D[45] -
                 6 * D[49] - 6 * D[53] - 6 * D[63] + 6 * D[67] + 6 * D[71] -
                 6 * D[77] + 6 * D[79]);                              // s1^2
        f1_coeff[13] =
                (2 * D[7] - 2 * D[5] + 4 * D[11] + 4 * D[15] + 4 * D[19] -
                 4 * D[21] - 4 * D[29] - 4 * D[33] - 2 * D[41] + 2 * D[43] -
                 2 * D[45] - 2 * D[49] + 2 * D[53] + 4 * D[55] - 4 * D[57] +
                 2 * D[63] + 2 * D[67] - 2 * D[71] + 2 * D[77] -
                 2 * D[79]);                                            // s3^2
        f1_coeff[14] =
                (2 * D[7] - 2 * D[5] - 4 * D[11] + 4 * D[15] - 4 * D[19] -
                 4 * D[21] - 4 * D[29] + 4 * D[33] + 2 * D[41] - 2 * D[43] -
                 2 * D[45] + 2 * D[49] - 2 * D[53] + 4 * D[55] + 4 * D[57] +
                 2 * D[63] - 2 * D[67] + 2 * D[71] - 2 * D[77] +
                 2 * D[79]);                                            // s2^2
        f1_coeff[15] =
                (2 * D[26] - 2 * D[6] - 2 * D[18] - 2 * D[22] - 2 * D[2] -
                 2 * D[38] - 2 * D[42] - 2 * D[54] - 2 * D[58] + 2 * D[62] +
                 2 * D[74] + 2 * D[78]);                              // s3^3
        f1_coeff[16] =
                (4 * D[5] + 4 * D[7] + 8 * D[11] + 8 * D[15] + 8 * D[19] +
                 8 * D[21] + 8 * D[29] + 8 * D[33] - 4 * D[41] - 4 * D[43] +
                 4 * D[45] - 4 * D[49] - 4 * D[53] + 8 * D[55] + 8 * D[57] +
                 4 * D[63] - 4 * D[67] - 4 * D[71] - 4 * D[77] -
                 4 * D[79]);                                            // s1 * s2 * s3
        f1_coeff[17] =
                (4 * D[4] - 4 * D[0] + 8 * D[10] + 8 * D[12] + 8 * D[28] +
                 8 * D[30] + 4 * D[36] - 4 * D[40] + 4 * D[80]);  // s1 * s2^2
        f1_coeff[18] =
                (6 * D[2] + 6 * D[6] + 6 * D[18] - 6 * D[22] - 6 * D[26] -
                 6 * D[38] - 6 * D[42] + 6 * D[54] - 6 * D[58] - 6 * D[62] -
                 6 * D[74] - 6 * D[78]);                              // s1^2 * s3
        f1_coeff[19] =
                (4 * D[0] - 4 * D[4] - 4 * D[8] - 4 * D[36] + 4 * D[40] +
                 4 * D[44] - 4 * D[72] + 4 * D[76] + 4 * D[80]);  // s1^3

        f2_coeff[0] =
                -2 * D[2] + 2 * D[6] - 2 * D[18] - 2 * D[22] - 2 * D[26] -
                2 * D[38] + 2 * D[42] + 2 * D[54] + 2 * D[58] + 2 * D[62] -
                2 * D[74] + 2 * D[78];                                // constant term
        f2_coeff[1] =
                (4 * D[4] - 4 * D[0] + 8 * D[10] + 8 * D[12] + 8 * D[28] +
                 8 * D[30] + 4 * D[36] - 4 * D[40] + 4 * D[80]);  // s1^2  * s2
        f2_coeff[2] =
                (4 * D[7] - 4 * D[5] - 8 * D[11] + 8 * D[15] - 8 * D[19] -
                 8 * D[21] - 8 * D[29] + 8 * D[33] + 4 * D[41] - 4 * D[43] -
                 4 * D[45] + 4 * D[49] - 4 * D[53] + 8 * D[55] + 8 * D[57] +
                 4 * D[63] - 4 * D[67] + 4 * D[71] - 4 * D[77] +
                 4 * D[79]);                                            // s1 * s2
        f2_coeff[3] = (8 * D[10] - 8 * D[20] - 8 * D[30] + 8 * D[50] +
                       8 * D[60] - 8 * D[70]);                     // s1 * s3
        f2_coeff[4] =
                (4 * D[3] - 4 * D[1] - 4 * D[9] + 4 * D[13] - 4 * D[17] -
                 8 * D[23] - 8 * D[25] + 4 * D[27] - 4 * D[31] + 4 * D[35] +
                 4 * D[37] - 4 * D[39] - 8 * D[47] + 8 * D[51] + 8 * D[59] +
                 8 * D[61] - 8 * D[65] + 8 * D[69] - 4 * D[73] +
                 4 * D[75]);                                            // s2 * s3
        f2_coeff[5] =
                (6 * D[41] - 6 * D[7] - 6 * D[5] + 6 * D[43] - 6 * D[45] +
                 6 * D[49] - 6 * D[53] - 6 * D[63] + 6 * D[67] - 6 * D[71] -
                 6 * D[77] - 6 * D[79]);                              // s2^2 * s3
        f2_coeff[6] =
                (4 * D[0] - 4 * D[4] + 4 * D[8] - 4 * D[36] + 4 * D[40] -
                 4 * D[44] + 4 * D[72] - 4 * D[76] + 4 * D[80]);  // s2^3
        f2_coeff[7] =
                (2 * D[17] - 2 * D[3] - 2 * D[9] - 2 * D[13] - 2 * D[1] +
                 4 * D[23] + 4 * D[25] - 2 * D[27] - 2 * D[31] + 2 * D[35] -
                 2 * D[37] - 2 * D[39] + 4 * D[47] + 4 * D[51] + 4 * D[59] +
                 4 * D[61] + 4 * D[65] + 4 * D[69] + 2 * D[73] +
                 2 * D[75]);                                            // s1 * s3^2
        f2_coeff[8] = (2 * D[1] + 2 * D[3] + 2 * D[9] + 2 * D[13] +
                       2 * D[17] - 4 * D[23] + 4 * D[25] + 2 * D[27] +
                       2 * D[31] + 2 * D[35] + 2 * D[37] + 2 * D[39] -
                       4 * D[47] + 4 * D[51] + 4 * D[59] - 4 * D[61] +
                       4 * D[65] - 4 * D[69] + 2 * D[73] + 2 * D[75]);  // s1
        f2_coeff[9] = (2 * D[5] + 2 * D[7] - 4 * D[11] + 4 * D[15] -
                       4 * D[19] + 4 * D[21] + 4 * D[29] - 4 * D[33] +
                       2 * D[41] + 2 * D[43] + 2 * D[45] + 2 * D[49] +
                       2 * D[53] + 4 * D[55] - 4 * D[57] + 2 * D[63] +
                       2 * D[67] + 2 * D[71] + 2 * D[77] + 2 * D[79]);  // s3
        f2_coeff[10] =
                (8 * D[20] - 4 * D[8] - 4 * D[0] - 8 * D[24] + 4 * D[40] -
                 8 * D[56] + 8 * D[60] - 4 * D[72] - 4 * D[80]);           // s2
        f2_coeff[11] =
                (4 * D[0] - 4 * D[40] + 4 * D[44] + 8 * D[50] + 8 * D[52] +
                 8 * D[68] + 8 * D[70] + 4 * D[76] - 4 * D[80]);  // s2 * s3^2
        f2_coeff[12] =
                (2 * D[6] - 2 * D[2] + 4 * D[14] - 4 * D[16] - 2 * D[18] +
                 2 * D[22] + 2 * D[26] + 4 * D[32] - 4 * D[34] + 2 * D[38] -
                 2 * D[42] + 4 * D[46] + 4 * D[48] + 2 * D[54] - 2 * D[58] -
                 2 * D[62] - 4 * D[64] - 4 * D[66] + 2 * D[74] -
                 2 * D[78]);                                            // s1^2
        f2_coeff[13] =
                (2 * D[2] - 2 * D[6] + 4 * D[14] + 4 * D[16] + 2 * D[18] +
                 2 * D[22] - 2 * D[26] - 4 * D[32] - 4 * D[34] + 2 * D[38] -
                 2 * D[42] + 4 * D[46] - 4 * D[48] - 2 * D[54] - 2 * D[58] +
                 2 * D[62] + 4 * D[64] - 4 * D[66] - 2 * D[74] +
                 2 * D[78]);                                            // s3^2
        f2_coeff[14] =
                (6 * D[2] - 6 * D[6] + 6 * D[18] - 6 * D[22] + 6 * D[26] -
                 6 * D[38] + 6 * D[42] - 6 * D[54] + 6 * D[58] - 6 * D[62] +
                 6 * D[74] - 6 * D[78]);                              // s2^2
        f2_coeff[15] =
                (2 * D[53] - 2 * D[7] - 2 * D[41] - 2 * D[43] - 2 * D[45] -
                 2 * D[49] - 2 * D[5] - 2 * D[63] - 2 * D[67] + 2 * D[71] +
                 2 * D[77] + 2 * D[79]);                              // s3^3
        f2_coeff[16] =
                (8 * D[14] - 4 * D[6] - 4 * D[2] + 8 * D[16] - 4 * D[18] +
                 4 * D[22] - 4 * D[26] + 8 * D[32] + 8 * D[34] + 4 * D[38] +
                 4 * D[42] + 8 * D[46] + 8 * D[48] - 4 * D[54] + 4 * D[58] -
                 4 * D[62] + 8 * D[64] + 8 * D[66] - 4 * D[74] -
                 4 * D[78]);                                            // s1 * s2 * s3
        f2_coeff[17] =
                (6 * D[13] - 6 * D[3] - 6 * D[9] - 6 * D[1] - 6 * D[17] -
                 6 * D[27] + 6 * D[31] - 6 * D[35] + 6 * D[37] + 6 * D[39] -
                 6 * D[73] - 6 * D[75]);                              // s1 * s2^2
        f2_coeff[18] =
                (2 * D[5] + 2 * D[7] + 4 * D[11] + 4 * D[15] + 4 * D[19] +
                 4 * D[21] + 4 * D[29] + 4 * D[33] - 2 * D[41] - 2 * D[43] +
                 2 * D[45] - 2 * D[49] - 2 * D[53] + 4 * D[55] + 4 * D[57] +
                 2 * D[63] - 2 * D[67] - 2 * D[71] - 2 * D[77] -
                 2 * D[79]);                                            // s1^2 * s3
        f2_coeff[19] =
                (2 * D[1] + 2 * D[3] + 2 * D[9] - 2 * D[13] - 2 * D[17] +
                 2 * D[27] - 2 * D[31] - 2 * D[35] - 2 * D[37] - 2 * D[39] -
                 2 * D[73] - 2 * D[75]);                              // s1^3

        f3_coeff[0] =
                2 * D[1] - 2 * D[3] + 2 * D[9] + 2 * D[13] + 2 * D[17] -
                2 * D[27] - 2 * D[31] - 2 * D[35] + 2 * D[37] - 2 * D[39] +
                2 * D[73] - 2 * D[75];                                // constant term
        f3_coeff[1] =
                (2 * D[5] + 2 * D[7] + 4 * D[11] + 4 * D[15] + 4 * D[19] +
                 4 * D[21] + 4 * D[29] + 4 * D[33] - 2 * D[41] - 2 * D[43] +
                 2 * D[45] - 2 * D[49] - 2 * D[53] + 4 * D[55] + 4 * D[57] +
                 2 * D[63] - 2 * D[67] - 2 * D[71] - 2 * D[77] -
                 2 * D[79]);                                            // s1^2  * s2
        f3_coeff[2] = (8 * D[10] - 8 * D[20] - 8 * D[30] + 8 * D[50] +
                       8 * D[60] - 8 * D[70]);                     // s1 * s2
        f3_coeff[3] =
                (4 * D[7] - 4 * D[5] + 8 * D[11] + 8 * D[15] + 8 * D[19] -
                 8 * D[21] - 8 * D[29] - 8 * D[33] - 4 * D[41] + 4 * D[43] -
                 4 * D[45] - 4 * D[49] + 4 * D[53] + 8 * D[55] - 8 * D[57] +
                 4 * D[63] + 4 * D[67] - 4 * D[71] + 4 * D[77] -
                 4 * D[79]);                                            // s1 * s3
        f3_coeff[4] =
                (4 * D[2] - 4 * D[6] + 8 * D[14] + 8 * D[16] + 4 * D[18] +
                 4 * D[22] - 4 * D[26] - 8 * D[32] - 8 * D[34] + 4 * D[38] -
                 4 * D[42] + 8 * D[46] - 8 * D[48] - 4 * D[54] - 4 * D[58] +
                 4 * D[62] + 8 * D[64] - 8 * D[66] - 4 * D[74] +
                 4 * D[78]);                                            // s2 * s3
        f3_coeff[5] =
                (4 * D[0] - 4 * D[40] + 4 * D[44] + 8 * D[50] + 8 * D[52] +
                 8 * D[68] + 8 * D[70] + 4 * D[76] - 4 * D[80]);  // s2^2 * s3
        f3_coeff[6] = (2 * D[41] - 2 * D[7] - 2 * D[5] + 2 * D[43] -
                       2 * D[45] + 2 * D[49] - 2 * D[53] - 2 * D[63] +
                       2 * D[67] - 2 * D[71] - 2 * D[77] - 2 * D[79]);  // s2^3
        f3_coeff[7] =
                (6 * D[26] - 6 * D[6] - 6 * D[18] - 6 * D[22] - 6 * D[2] -
                 6 * D[38] - 6 * D[42] - 6 * D[54] - 6 * D[58] + 6 * D[62] +
                 6 * D[74] + 6 * D[78]);  // s1 * s3^2
        f3_coeff[8] = (2 * D[2] + 2 * D[6] + 4 * D[14] - 4 * D[16] +
                       2 * D[18] + 2 * D[22] + 2 * D[26] - 4 * D[32] +
                       4 * D[34] + 2 * D[38] + 2 * D[42] + 4 * D[46] -
                       4 * D[48] + 2 * D[54] + 2 * D[58] + 2 * D[62] -
                       4 * D[64] + 4 * D[66] + 2 * D[74] + 2 * D[78]);   // s1
        f3_coeff[9] =
                (8 * D[10] - 4 * D[4] - 4 * D[0] - 8 * D[12] - 8 * D[28] +
                 8 * D[30] - 4 * D[36] - 4 * D[40] + 4 * D[80]);            // s3
        f3_coeff[10] = (2 * D[5] + 2 * D[7] - 4 * D[11] + 4 * D[15] -
                        4 * D[19] + 4 * D[21] + 4 * D[29] - 4 * D[33] +
                        2 * D[41] + 2 * D[43] + 2 * D[45] + 2 * D[49] +
                        2 * D[53] + 4 * D[55] - 4 * D[57] + 2 * D[63] +
                        2 * D[67] + 2 * D[71] + 2 * D[77] + 2 * D[79]);  // s2
        f3_coeff[11] =
                (6 * D[53] - 6 * D[7] - 6 * D[41] - 6 * D[43] - 6 * D[45] -
                 6 * D[49] - 6 * D[5] - 6 * D[63] - 6 * D[67] + 6 * D[71] +
                 6 * D[77] + 6 * D[79]);                              // s2 * s3^2
        f3_coeff[12] =
                (2 * D[1] - 2 * D[3] + 2 * D[9] - 2 * D[13] - 2 * D[17] +
                 4 * D[23] - 4 * D[25] - 2 * D[27] + 2 * D[31] + 2 * D[35] -
                 2 * D[37] + 2 * D[39] + 4 * D[47] + 4 * D[51] + 4 * D[59] -
                 4 * D[61] - 4 * D[65] - 4 * D[69] - 2 * D[73] +
                 2 * D[75]);                                            // s1^2
        f3_coeff[13] =
                (6 * D[3] - 6 * D[1] - 6 * D[9] - 6 * D[13] + 6 * D[17] +
                 6 * D[27] + 6 * D[31] - 6 * D[35] - 6 * D[37] + 6 * D[39] +
                 6 * D[73] - 6 * D[75]);                              // s3^2
        f3_coeff[14] =
                (2 * D[3] - 2 * D[1] - 2 * D[9] + 2 * D[13] - 2 * D[17] -
                 4 * D[23] - 4 * D[25] + 2 * D[27] - 2 * D[31] + 2 * D[35] +
                 2 * D[37] - 2 * D[39] - 4 * D[47] + 4 * D[51] + 4 * D[59] +
                 4 * D[61] - 4 * D[65] + 4 * D[69] - 2 * D[73] +
                 2 * D[75]);                                            // s2^2
        f3_coeff[15] =
                (4 * D[0] + 4 * D[4] - 4 * D[8] + 4 * D[36] + 4 * D[40] -
                 4 * D[44] - 4 * D[72] - 4 * D[76] + 4 * D[80]);  // s3^3
        f3_coeff[16] =
                (4 * D[17] - 4 * D[3] - 4 * D[9] - 4 * D[13] - 4 * D[1] +
                 8 * D[23] + 8 * D[25] - 4 * D[27] - 4 * D[31] + 4 * D[35] -
                 4 * D[37] - 4 * D[39] + 8 * D[47] + 8 * D[51] + 8 * D[59] +
                 8 * D[61] + 8 * D[65] + 8 * D[69] + 4 * D[73] +
                 4 * D[75]);                                            // s1 * s2 * s3
        f3_coeff[17] =
                (4 * D[14] - 2 * D[6] - 2 * D[2] + 4 * D[16] - 2 * D[18] +
                 2 * D[22] - 2 * D[26] + 4 * D[32] + 4 * D[34] + 2 * D[38] +
                 2 * D[42] + 4 * D[46] + 4 * D[48] - 2 * D[54] + 2 * D[58] -
                 2 * D[62] + 4 * D[64] + 4 * D[66] - 2 * D[74] -
                 2 * D[78]);                                            // s1 * s2^2
        f3_coeff[18] =
                (4 * D[8] - 4 * D[0] + 8 * D[20] + 8 * D[24] + 4 * D[40] +
                 8 * D[56] + 8 * D[60] + 4 * D[72] - 4 * D[80]);  // s1^2 * s3
        f3_coeff[19] =
                (2 * D[2] + 2 * D[6] + 2 * D[18] - 2 * D[22] - 2 * D[26] -
                 2 * D[38] - 2 * D[42] + 2 * D[54] - 2 * D[58] - 2 * D[62] -
                 2 * D[74] - 2 * D[78]);                              // s1^3
    }
};
Ptr<DLSPnP> DLSPnP::create(const Mat &points_, const Mat &calib_norm_pts, const Mat &K) {
    return makePtr<DLSPnPImpl>(points_, calib_norm_pts, K);
}
}}