local_optimization.cpp
29.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#include "opencv2/imgproc/detail/gcgraph.hpp"
namespace cv { namespace usac {
class GraphCutImpl : public GraphCut {
protected:
const Ptr<NeighborhoodGraph> neighborhood_graph;
const Ptr<Estimator> estimator;
const Ptr<Quality> quality;
const Ptr<RandomGenerator> lo_sampler;
const Ptr<Error> error;
int gc_sample_size, lo_inner_iterations, points_size;
double spatial_coherence, sqr_trunc_thr, one_minus_lambda;
std::vector<int> labeling_inliers;
std::vector<double> energies, weights;
std::vector<bool> used_edges;
std::vector<Mat> gc_models;
public:
// In lo_sampler_ the sample size should be set and be equal gc_sample_size_
GraphCutImpl (const Ptr<Estimator> &estimator_, const Ptr<Error> &error_, const Ptr<Quality> &quality_,
const Ptr<NeighborhoodGraph> &neighborhood_graph_, const Ptr<RandomGenerator> &lo_sampler_,
double threshold_, double spatial_coherence_term, int gc_inner_iteration_number_) :
neighborhood_graph (neighborhood_graph_), estimator (estimator_), quality (quality_),
lo_sampler (lo_sampler_), error (error_) {
points_size = quality_->getPointsSize();
spatial_coherence = spatial_coherence_term;
sqr_trunc_thr = threshold_ * 2.25; // threshold is already squared
gc_sample_size = lo_sampler_->getSubsetSize();
lo_inner_iterations = gc_inner_iteration_number_;
one_minus_lambda = 1.0 - spatial_coherence;
energies = std::vector<double>(points_size);
labeling_inliers = std::vector<int>(points_size);
used_edges = std::vector<bool>(points_size*points_size);
gc_models = std::vector<Mat> (estimator->getMaxNumSolutionsNonMinimal());
}
bool refineModel (const Mat &best_model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) override {
if (best_model_score.inlier_number < estimator->getNonMinimalSampleSize())
return false;
// improve best model by non minimal estimation
new_model_score = Score(); // set score to inf (worst case)
best_model.copyTo(new_model);
bool is_best_model_updated = true;
while (is_best_model_updated) {
is_best_model_updated = false;
// Build graph problem. Apply graph cut to G
int labeling_inliers_size = labeling(new_model);
for (int iter = 0; iter < lo_inner_iterations; iter++) {
// sample to generate min (|I_7m|, |I|)
int num_of_estimated_models;
if (labeling_inliers_size > gc_sample_size) {
// generate random subset in range <0; |I|>
num_of_estimated_models = estimator->estimateModelNonMinimalSample
(lo_sampler->generateUniqueRandomSubset(labeling_inliers,
labeling_inliers_size), gc_sample_size, gc_models, weights);
} else {
if (iter > 0) break; // break inliers are not updated
num_of_estimated_models = estimator->estimateModelNonMinimalSample
(labeling_inliers, labeling_inliers_size, gc_models, weights);
}
for (int model_idx = 0; model_idx < num_of_estimated_models; model_idx++) {
const Score gc_temp_score = quality->getScore(gc_models[model_idx]);
// store the best model from estimated models
if (gc_temp_score.isBetter(new_model_score)) {
is_best_model_updated = true;
new_model_score = gc_temp_score;
gc_models[model_idx].copyTo(new_model);
}
}
} // end of inner GC local optimization
} // end of while loop
return true;
}
private:
// find inliers using graph cut algorithm.
int labeling (const Mat& model) {
const auto &errors = error->getErrors(model);
detail::GCGraph<double> graph;
for (int pt = 0; pt < points_size; pt++)
graph.addVtx();
// The distance and energy for each point
double tmp_squared_distance, energy;
// Estimate the vertex capacities
for (int pt = 0; pt < points_size; pt++) {
tmp_squared_distance = errors[pt];
if (std::isnan(tmp_squared_distance))
tmp_squared_distance = std::numeric_limits<float>::max();
energy = tmp_squared_distance / sqr_trunc_thr; // Truncated quadratic cost
if (tmp_squared_distance <= sqr_trunc_thr)
graph.addTermWeights(pt, 0, one_minus_lambda * (1 - energy));
else
graph.addTermWeights(pt, one_minus_lambda * energy, 0);
energies[pt] = energy > 1 ? 1 : energy;
}
std::fill(used_edges.begin(), used_edges.end(), false);
bool has_edges = false;
// Iterate through all points and set their edges
for (int point_idx = 0; point_idx < points_size; ++point_idx) {
energy = energies[point_idx];
// Iterate through all neighbors
for (int actual_neighbor_idx : neighborhood_graph->getNeighbors(point_idx)) {
if (actual_neighbor_idx == point_idx ||
used_edges[actual_neighbor_idx*points_size + point_idx] ||
used_edges[point_idx*points_size + actual_neighbor_idx])
continue;
used_edges[actual_neighbor_idx*points_size + point_idx] = true;
used_edges[point_idx*points_size + actual_neighbor_idx] = true;
double a = (0.5 * (energy + energies[actual_neighbor_idx])) * spatial_coherence,
b = spatial_coherence, c = spatial_coherence, d = 0;
graph.addTermWeights(point_idx, d, a);
b -= a;
if (b + c < 0)
continue; // invalid regularity
if (b < 0) {
graph.addTermWeights(point_idx, 0, b);
graph.addTermWeights(actual_neighbor_idx, 0, -b);
graph.addEdges(point_idx, actual_neighbor_idx, 0, b + c);
} else if (c < 0) {
graph.addTermWeights(point_idx, 0, -c);
graph.addTermWeights(actual_neighbor_idx, 0, c);
graph.addEdges(point_idx, actual_neighbor_idx, b + c, 0);
} else
graph.addEdges(point_idx, actual_neighbor_idx, b, c);
has_edges = true;
}
}
if (!has_edges)
return quality->getInliers(model, labeling_inliers);
graph.maxFlow();
int inlier_number = 0;
for (int pt = 0; pt < points_size; pt++)
if (! graph.inSourceSegment(pt)) // check for sink
labeling_inliers[inlier_number++] = pt;
return inlier_number;
}
Ptr<LocalOptimization> clone(int state) const override {
return makePtr<GraphCutImpl>(estimator->clone(), error->clone(), quality->clone(),
neighborhood_graph,lo_sampler->clone(state), sqr_trunc_thr / 2.25,
spatial_coherence, lo_inner_iterations);
}
};
Ptr<GraphCut> GraphCut::create(const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality_, const Ptr<NeighborhoodGraph> &neighborhood_graph_,
const Ptr<RandomGenerator> &lo_sampler_, double threshold_,
double spatial_coherence_term, int gc_inner_iteration_number) {
return makePtr<GraphCutImpl>(estimator_, error_, quality_, neighborhood_graph_, lo_sampler_,
threshold_, spatial_coherence_term, gc_inner_iteration_number);
}
/*
* http://cmp.felk.cvut.cz/~matas/papers/chum-dagm03.pdf
*/
class InnerIterativeLocalOptimizationImpl : public InnerIterativeLocalOptimization {
private:
const Ptr<Estimator> estimator;
const Ptr<Quality> quality;
const Ptr<RandomGenerator> lo_sampler;
Ptr<RandomGenerator> lo_iter_sampler;
std::vector<Mat> lo_models, lo_iter_models;
std::vector<int> inliers_of_best_model, virtual_inliers;
int lo_inner_max_iterations, lo_iter_max_iterations, lo_sample_size, lo_iter_sample_size;
bool is_iterative;
double threshold, new_threshold, threshold_step;
std::vector<double> weights;
public:
InnerIterativeLocalOptimizationImpl (const Ptr<Estimator> &estimator_, const Ptr<Quality> &quality_,
const Ptr<RandomGenerator> &lo_sampler_, int pts_size,
double threshold_, bool is_iterative_, int lo_iter_sample_size_,
int lo_inner_iterations_=10, int lo_iter_max_iterations_=5,
double threshold_multiplier_=4)
: estimator (estimator_), quality (quality_), lo_sampler (lo_sampler_)
, lo_iter_sample_size(0)
, new_threshold(0), threshold_step(0)
{
lo_inner_max_iterations = lo_inner_iterations_;
lo_iter_max_iterations = lo_iter_max_iterations_;
threshold = threshold_;
lo_sample_size = lo_sampler->getSubsetSize();
is_iterative = is_iterative_;
if (is_iterative) {
lo_iter_sample_size = lo_iter_sample_size_;
lo_iter_sampler = UniformRandomGenerator::create(0/*state*/, pts_size, lo_iter_sample_size_);
lo_iter_models = std::vector<Mat>(estimator->getMaxNumSolutionsNonMinimal());
virtual_inliers = std::vector<int>(pts_size);
new_threshold = threshold_multiplier_ * threshold;
// reduce multiplier threshold K·θ by this number in each iteration.
// In the last iteration there be original threshold θ.
threshold_step = (new_threshold - threshold) / lo_iter_max_iterations_;
}
lo_models = std::vector<Mat>(estimator->getMaxNumSolutionsNonMinimal());
// Allocate max memory to avoid reallocation
inliers_of_best_model = std::vector<int>(pts_size);
}
/*
* Implementation of Locally Optimized Ransac
* Inner + Iterative
*/
bool refineModel (const Mat &so_far_the_best_model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) override {
if (best_model_score.inlier_number < estimator->getNonMinimalSampleSize())
return false;
so_far_the_best_model.copyTo(new_model);
new_model_score = best_model_score;
// get inliers from so far the best model.
int num_inliers_of_best_model = quality->getInliers(so_far_the_best_model,
inliers_of_best_model);
// Inner Local Optimization Ransac.
for (int iters = 0; iters < lo_inner_max_iterations; iters++) {
int num_estimated_models;
// Generate sample of lo_sample_size from inliers from the best model.
if (num_inliers_of_best_model > lo_sample_size) {
// if there are many inliers take limited number at random.
num_estimated_models = estimator->estimateModelNonMinimalSample
(lo_sampler->generateUniqueRandomSubset(inliers_of_best_model,
num_inliers_of_best_model), lo_sample_size, lo_models, weights);
} else {
// if model was not updated in first iteration, so break.
if (iters > 0) break;
// if inliers are less than limited number of sample then take all for estimation
// if it fails -> end Lo.
num_estimated_models = estimator->estimateModelNonMinimalSample
(inliers_of_best_model, num_inliers_of_best_model, lo_models, weights);
}
//////// Choose the best lo_model from estimated lo_models.
for (int model_idx = 0; model_idx < num_estimated_models; model_idx++) {
const Score temp_score = quality->getScore(lo_models[model_idx]);
if (temp_score.isBetter(new_model_score)) {
new_model_score = temp_score;
lo_models[model_idx].copyTo(new_model);
}
}
if (is_iterative) {
double lo_threshold = new_threshold;
// get max virtual inliers. Note that they are nor real inliers,
// because we got them with bigger threshold.
int virtual_inliers_size = quality->getInliers
(new_model, virtual_inliers, lo_threshold);
Mat lo_iter_model;
Score lo_iter_score = Score(); // set worst case
for (int iterations = 0; iterations < lo_iter_max_iterations; iterations++) {
lo_threshold -= threshold_step;
if (virtual_inliers_size > lo_iter_sample_size) {
// if there are more inliers than limit for sample size then generate at random
// sample from LO model.
num_estimated_models = estimator->estimateModelNonMinimalSample
(lo_iter_sampler->generateUniqueRandomSubset (virtual_inliers,
virtual_inliers_size), lo_iter_sample_size, lo_iter_models, weights);
} else {
// break if failed, very low probability that it will not fail in next iterations
// estimate model with all virtual inliers
num_estimated_models = estimator->estimateModelNonMinimalSample
(virtual_inliers, virtual_inliers_size, lo_iter_models, weights);
}
if (num_estimated_models == 0) break;
// Get score and update virtual inliers with current threshold
////// Choose the best lo_iter_model from estimated lo_iter_models.
lo_iter_models[0].copyTo(lo_iter_model);
lo_iter_score = quality->getScore(lo_iter_model);
for (int model_idx = 1; model_idx < num_estimated_models; model_idx++) {
const Score temp_score = quality->getScore(lo_iter_models[model_idx]);
if (temp_score.isBetter(lo_iter_score)) {
lo_iter_score = temp_score;
lo_iter_models[model_idx].copyTo(lo_iter_model);
}
}
if (iterations != lo_iter_max_iterations-1)
virtual_inliers_size = quality->getInliers(lo_iter_model, virtual_inliers, lo_threshold);
}
if (lo_iter_score.isBetter(new_model_score)) {
new_model_score = lo_iter_score;
lo_iter_model.copyTo(new_model);
}
}
if (num_inliers_of_best_model < new_model_score.inlier_number && iters != lo_inner_max_iterations-1)
num_inliers_of_best_model = quality->getInliers (new_model, inliers_of_best_model);
}
return true;
}
Ptr<LocalOptimization> clone(int state) const override {
return makePtr<InnerIterativeLocalOptimizationImpl>(estimator->clone(), quality->clone(),
lo_sampler->clone(state),(int)inliers_of_best_model.size(), threshold, is_iterative,
lo_iter_sample_size, lo_inner_max_iterations, lo_iter_max_iterations,
new_threshold / threshold);
}
};
Ptr<InnerIterativeLocalOptimization> InnerIterativeLocalOptimization::create
(const Ptr<Estimator> &estimator_, const Ptr<Quality> &quality_,
const Ptr<RandomGenerator> &lo_sampler_, int pts_size,
double threshold_, bool is_iterative_, int lo_iter_sample_size_,
int lo_inner_iterations_, int lo_iter_max_iterations_,
double threshold_multiplier_) {
return makePtr<InnerIterativeLocalOptimizationImpl>(estimator_, quality_, lo_sampler_,
pts_size, threshold_, is_iterative_, lo_iter_sample_size_,
lo_inner_iterations_, lo_iter_max_iterations_, threshold_multiplier_);
}
class SigmaConsensusImpl : public SigmaConsensus {
private:
const Ptr<Estimator> estimator;
const Ptr<Quality> quality;
const Ptr<Error> error;
const Ptr<ModelVerifier> verifier;
const GammaValues& gamma_generator;
// The degrees of freedom of the data from which the model is estimated.
// E.g., for models coming from point correspondences (x1,y1,x2,y2), it is 4.
const int degrees_of_freedom;
// A 0.99 quantile of the Chi^2-distribution to convert sigma values to residuals
const double k;
// Calculating (DoF - 1) / 2 which will be used for the estimation and,
// due to being constant, it is better to calculate it a priori.
double dof_minus_one_per_two;
const double C;
// The size of a minimal sample used for the estimation
const int sample_size;
// Calculating 2^(DoF - 1) which will be used for the estimation and,
// due to being constant, it is better to calculate it a priori.
double two_ad_dof;
// Calculating C * 2^(DoF - 1) which will be used for the estimation and,
// due to being constant, it is better to calculate it a priori.
double C_times_two_ad_dof;
// Calculating the gamma value of (DoF - 1) / 2 which will be used for the estimation and,
// due to being constant, it is better to calculate it a priori.
double squared_sigma_max_2, one_over_sigma;
// Calculating the upper incomplete gamma value of (DoF - 1) / 2 with k^2 / 2.
const double gamma_k;
// Calculating the lower incomplete gamma value of (DoF - 1) / 2 which will be used for the estimation and,
// due to being constant, it is better to calculate it a priori.
double max_sigma_sqr;
const int points_size, number_of_irwls_iters;
const double maximum_threshold, max_sigma;
std::vector<double> sqr_residuals, sigma_weights;
std::vector<int> sqr_residuals_idxs;
// Models fit by weighted least-squares fitting
std::vector<Mat> sigma_models;
// Points used in the weighted least-squares fitting
std::vector<int> sigma_inliers;
// Weights used in the the weighted least-squares fitting
int max_lo_sample_size, stored_gamma_number_min1;
double scale_of_stored_gammas;
RNG rng;
const std::vector<double> &stored_gamma_values;
public:
SigmaConsensusImpl (const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality_, const Ptr<ModelVerifier> &verifier_,
int max_lo_sample_size_, int number_of_irwls_iters_, int DoF,
double sigma_quantile, double upper_incomplete_of_sigma_quantile, double C_,
double maximum_thr) : estimator (estimator_), quality(quality_),
error (error_), verifier(verifier_),
gamma_generator(GammaValues::getSingleton()),
degrees_of_freedom(DoF), k (sigma_quantile), C(C_),
sample_size(estimator_->getMinimalSampleSize()),
gamma_k (upper_incomplete_of_sigma_quantile), points_size (quality_->getPointsSize()),
number_of_irwls_iters (number_of_irwls_iters_),
maximum_threshold(maximum_thr), max_sigma (maximum_thr),
stored_gamma_values(gamma_generator.getGammaValues())
{
dof_minus_one_per_two = (degrees_of_freedom - 1.0) / 2.0;
two_ad_dof = std::pow(2.0, dof_minus_one_per_two);
C_times_two_ad_dof = C * two_ad_dof;
// Calculate 2 * \sigma_{max}^2 a priori
squared_sigma_max_2 = max_sigma * max_sigma * 2.0;
// Divide C * 2^(DoF - 1) by \sigma_{max} a priori
one_over_sigma = C_times_two_ad_dof / max_sigma;
max_sigma_sqr = squared_sigma_max_2 * 0.5;
sqr_residuals = std::vector<double>(points_size);
sqr_residuals_idxs = std::vector<int>(points_size);
sigma_inliers = std::vector<int>(points_size);
max_lo_sample_size = max_lo_sample_size_;
sigma_weights = std::vector<double>(points_size);
sigma_models = std::vector<Mat>(estimator->getMaxNumSolutionsNonMinimal());
stored_gamma_number_min1 = gamma_generator.getTableSize()-1;
scale_of_stored_gammas = gamma_generator.getScaleOfGammaValues();
}
// https://github.com/danini/magsac
bool refineModel (const Mat &in_model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) override {
int residual_cnt = 0;
if (verifier->isModelGood(in_model)) {
if (verifier->hasErrors()) {
const std::vector<float> &errors = verifier->getErrors();
for (int point_idx = 0; point_idx < points_size; ++point_idx) {
// Calculate the residual of the current point
const auto residual = sqrtf(errors[point_idx]);
if (max_sigma > residual) {
// Store the residual of the current point and its index
sqr_residuals[residual_cnt] = residual;
sqr_residuals_idxs[residual_cnt++] = point_idx;
}
// Interrupt if there is no chance of being better
if (residual_cnt + points_size - point_idx < best_model_score.inlier_number)
return false;
}
} else {
error->setModelParameters(in_model);
for (int point_idx = 0; point_idx < points_size; ++point_idx) {
const double sqr_residual = error->getError(point_idx);
if (sqr_residual < max_sigma_sqr) {
// Store the residual of the current point and its index
sqr_residuals[residual_cnt] = sqr_residual;
sqr_residuals_idxs[residual_cnt++] = point_idx;
}
if (residual_cnt + points_size - point_idx < best_model_score.inlier_number)
return false;
}
}
} else return false;
in_model.copyTo(new_model);
new_model_score = Score();
// Do the iteratively re-weighted least squares fitting
for (int iterations = 0; iterations < number_of_irwls_iters; iterations++) {
int sigma_inliers_cnt = 0;
// If the current iteration is not the first, the set of possibly inliers
// (i.e., points closer than the maximum threshold) have to be recalculated.
if (iterations > 0) {
// error->setModelParameters(polished_model);
error->setModelParameters(new_model);
// Remove everything from the residual vector
residual_cnt = 0;
// Collect the points which are closer than the maximum threshold
for (int point_idx = 0; point_idx < points_size; ++point_idx) {
// Calculate the residual of the current point
const double sqr_residual = error->getError(point_idx);
if (sqr_residual < max_sigma_sqr) {
// Store the residual of the current point and its index
sqr_residuals[residual_cnt] = sqr_residual;
sqr_residuals_idxs[residual_cnt++] = point_idx;
}
}
sigma_inliers_cnt = 0;
}
// Calculate the weight of each point
for (int i = 0; i < residual_cnt; i++) {
// Get the position of the gamma value in the lookup table
int x = (int)round(scale_of_stored_gammas * sqr_residuals[i]
/ squared_sigma_max_2);
// If the sought gamma value is not stored in the lookup, return the closest element
if (x >= stored_gamma_number_min1 || x < 0 /*overflow*/) // actual number of gamma values is 1 more, so >=
x = stored_gamma_number_min1;
sigma_inliers[sigma_inliers_cnt] = sqr_residuals_idxs[i]; // store index of point for LSQ
sigma_weights[sigma_inliers_cnt++] = one_over_sigma * (stored_gamma_values[x] - gamma_k);
}
// random shuffle sigma inliers
if (sigma_inliers_cnt > max_lo_sample_size)
for (int i = sigma_inliers_cnt-1; i > 0; i--) {
const int idx = rng.uniform(0, i+1);
std::swap(sigma_inliers[i], sigma_inliers[idx]);
std::swap(sigma_weights[i], sigma_weights[idx]);
}
const int num_est_models = estimator->estimateModelNonMinimalSample
(sigma_inliers, std::min(max_lo_sample_size, sigma_inliers_cnt),
sigma_models, sigma_weights);
if (num_est_models == 0)
break; // break iterations
// Update the model parameters
Mat polished_model = sigma_models[0];
if (num_est_models > 1) {
// find best over other models
Score sigma_best_score = quality->getScore(polished_model);
for (int m = 1; m < num_est_models; m++) {
const Score sc = quality->getScore(sigma_models[m]);
if (sc.isBetter(sigma_best_score)) {
polished_model = sigma_models[m];
sigma_best_score = sc;
}
}
}
const Score polished_model_score = quality->getScore(polished_model);
if (polished_model_score.isBetter(new_model_score)){
new_model_score = polished_model_score;
polished_model.copyTo(new_model);
}
}
const Score in_model_score = quality->getScore(in_model);
if (in_model_score.isBetter(new_model_score)) {
new_model_score = in_model_score;
in_model.copyTo(new_model);
}
return true;
}
Ptr<LocalOptimization> clone(int state) const override {
return makePtr<SigmaConsensusImpl>(estimator->clone(), error->clone(), quality->clone(),
verifier->clone(state), max_lo_sample_size,
number_of_irwls_iters, degrees_of_freedom, k, gamma_k, C, maximum_threshold);
}
};
Ptr<SigmaConsensus>
SigmaConsensus::create(const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality, const Ptr<ModelVerifier> &verifier_,
int max_lo_sample_size, int number_of_irwls_iters_, int DoF,
double sigma_quantile, double upper_incomplete_of_sigma_quantile, double C_,
double maximum_thr) {
return makePtr<SigmaConsensusImpl>(estimator_, error_, quality, verifier_,
max_lo_sample_size, number_of_irwls_iters_, DoF, sigma_quantile,
upper_incomplete_of_sigma_quantile, C_, maximum_thr);
}
/////////////////////////////////////////// FINAL MODEL POLISHER ////////////////////////
class LeastSquaresPolishingImpl : public LeastSquaresPolishing {
private:
const Ptr<Estimator> estimator;
const Ptr<Quality> quality;
int lsq_iterations;
std::vector<int> inliers;
std::vector<Mat> models;
std::vector<double> weights;
public:
LeastSquaresPolishingImpl(const Ptr<Estimator> &estimator_, const Ptr<Quality> &quality_,
int lsq_iterations_) :
estimator(estimator_), quality(quality_) {
lsq_iterations = lsq_iterations_;
// allocate memory for inliers array and models
inliers = std::vector<int>(quality_->getPointsSize());
models = std::vector<Mat>(estimator->getMaxNumSolutionsNonMinimal());
}
bool polishSoFarTheBestModel(const Mat &model, const Score &best_model_score,
Mat &new_model, Score &out_score) override {
// get inliers from input model
int inlier_number = quality->getInliers(model, inliers);
if (inlier_number < estimator->getMinimalSampleSize())
return false;
out_score = Score(); // set the worst case
// several all-inlier least-squares refines model better than only one but for
// big amount of points may be too time-consuming.
for (int lsq_iter = 0; lsq_iter < lsq_iterations; lsq_iter++) {
bool model_updated = false;
// estimate non minimal models with all inliers
const int num_models = estimator->estimateModelNonMinimalSample(inliers,
inlier_number, models, weights);
for (int model_idx = 0; model_idx < num_models; model_idx++) {
const Score score = quality->getScore(models[model_idx]);
if (best_model_score.isBetter(score))
continue;
if (score.isBetter(out_score)) {
models[model_idx].copyTo(new_model);
out_score = score;
model_updated = true;
}
}
if (!model_updated)
// if model was not updated at the first iteration then return false
// otherwise if all-inliers LSQ has not updated model then no sense
// to do it again -> return true (model was updated before).
return lsq_iter > 0;
// if number of inliers doesn't increase more than 5% then break
if (fabs(static_cast<double>(out_score.inlier_number) - static_cast<double>
(best_model_score.inlier_number)) / best_model_score.inlier_number < 0.05)
return true;
if (lsq_iter != lsq_iterations - 1)
// if not the last LSQ normalization then get inliers for next normalization
inlier_number = quality->getInliers(new_model, inliers);
}
return true;
}
};
Ptr<LeastSquaresPolishing> LeastSquaresPolishing::create (const Ptr<Estimator> &estimator_,
const Ptr<Quality> &quality_, int lsq_iterations_) {
return makePtr<LeastSquaresPolishingImpl>(estimator_, quality_, lsq_iterations_);
}
}}