ransac_solvers.cpp
52.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#include <atomic>
namespace cv { namespace usac {
int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp);
void setParameters (int flag, Ptr<Model> ¶ms, EstimationMethod estimator, double thr,
int max_iters, double conf, bool mask_needed);
class RansacOutputImpl : public RansacOutput {
private:
Mat model;
// vector of number_inliers size
std::vector<int> inliers;
// vector of points size, true if inlier, false-outlier
std::vector<bool> inliers_mask;
// vector of points size, value of i-th index corresponds to error of i-th point if i is inlier.
std::vector<double> errors;
// the best found score of RANSAC
double score;
int seconds, milliseconds, microseconds;
int time_mcs, number_inliers, number_estimated_models, number_good_models;
int number_iterations; // number of iterations of main RANSAC
public:
RansacOutputImpl (const Mat &model_, const std::vector<bool> &inliers_mask_,
int time_mcs_, double score_, int number_inliers_, int number_iterations_,
int number_estimated_models_, int number_good_models_) {
model_.copyTo(model);
inliers_mask = inliers_mask_;
time_mcs = time_mcs_;
score = score_;
number_inliers = number_inliers_;
number_iterations = number_iterations_;
number_estimated_models = number_estimated_models_;
number_good_models = number_good_models_;
microseconds = time_mcs % 1000;
milliseconds = ((time_mcs - microseconds)/1000) % 1000;
seconds = ((time_mcs - 1000*milliseconds - microseconds)/(1000*1000)) % 60;
}
/*
* Return inliers' indices.
* size of vector = number of inliers
*/
const std::vector<int> &getInliers() override {
if (inliers.empty()) {
inliers.reserve(inliers_mask.size());
int pt_cnt = 0;
for (bool is_inlier : inliers_mask) {
if (is_inlier)
inliers.emplace_back(pt_cnt);
pt_cnt++;
}
}
return inliers;
}
// Return inliers mask. Vector of points size. 1-inlier, 0-outlier.
const std::vector<bool> &getInliersMask() const override { return inliers_mask; }
int getTimeMicroSeconds() const override {return time_mcs; }
int getTimeMicroSeconds1() const override {return microseconds; }
int getTimeMilliSeconds2() const override {return milliseconds; }
int getTimeSeconds3() const override {return seconds; }
int getNumberOfInliers() const override { return number_inliers; }
int getNumberOfMainIterations() const override { return number_iterations; }
int getNumberOfGoodModels () const override { return number_good_models; }
int getNumberOfEstimatedModels () const override { return number_estimated_models; }
const Mat &getModel() const override { return model; }
};
Ptr<RansacOutput> RansacOutput::create(const Mat &model_, const std::vector<bool> &inliers_mask_,
int time_mcs_, double score_, int number_inliers_, int number_iterations_,
int number_estimated_models_, int number_good_models_) {
return makePtr<RansacOutputImpl>(model_, inliers_mask_, time_mcs_, score_, number_inliers_,
number_iterations_, number_estimated_models_, number_good_models_);
}
class Ransac {
protected:
const Ptr<const Model> params;
const Ptr<const Estimator> _estimator;
const Ptr<Quality> _quality;
const Ptr<Sampler> _sampler;
const Ptr<TerminationCriteria> _termination_criteria;
const Ptr<ModelVerifier> _model_verifier;
const Ptr<Degeneracy> _degeneracy;
const Ptr<LocalOptimization> _local_optimization;
const Ptr<FinalModelPolisher> model_polisher;
const int points_size, state;
const bool parallel;
public:
Ransac (const Ptr<const Model> ¶ms_, int points_size_, const Ptr<const Estimator> &estimator_, const Ptr<Quality> &quality_,
const Ptr<Sampler> &sampler_, const Ptr<TerminationCriteria> &termination_criteria_,
const Ptr<ModelVerifier> &model_verifier_, const Ptr<Degeneracy> °eneracy_,
const Ptr<LocalOptimization> &local_optimization_, const Ptr<FinalModelPolisher> &model_polisher_,
bool parallel_=false, int state_ = 0) :
params (params_), _estimator (estimator_), _quality (quality_), _sampler (sampler_),
_termination_criteria (termination_criteria_), _model_verifier (model_verifier_),
_degeneracy (degeneracy_), _local_optimization (local_optimization_),
model_polisher (model_polisher_), points_size (points_size_), state(state_),
parallel(parallel_) {}
bool run(Ptr<RansacOutput> &ransac_output) {
if (points_size < params->getSampleSize())
return false;
const auto begin_time = std::chrono::steady_clock::now();
// check if LO
const bool LO = params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL;
const bool is_magsac = params->getLO() == LocalOptimMethod::LOCAL_OPTIM_SIGMA;
const int max_hyp_test_before_ver = params->getMaxNumHypothesisToTestBeforeRejection();
const int repeat_magsac = 10, max_iters_before_LO = params->getMaxItersBeforeLO();
Score best_score;
Mat best_model;
int final_iters;
if (! parallel) {
auto update_best = [&] (const Mat &new_model, const Score &new_score) {
best_score = new_score;
// remember best model
new_model.copyTo(best_model);
// update quality and verifier to save evaluation time of a model
_quality->setBestScore(best_score.score);
// update verifier
_model_verifier->update(best_score.inlier_number);
// update upper bound of iterations
return _termination_criteria->update(best_model, best_score.inlier_number);
};
bool was_LO_run = false;
Mat non_degenerate_model, lo_model;
Score current_score, lo_score, non_denegenerate_model_score;
// reallocate memory for models
std::vector<Mat> models(_estimator->getMaxNumSolutions());
// allocate memory for sample
std::vector<int> sample(_estimator->getMinimalSampleSize());
int iters = 0, max_iters = params->getMaxIters();
for (; iters < max_iters; iters++) {
_sampler->generateSample(sample);
const int number_of_models = _estimator->estimateModels(sample, models);
for (int i = 0; i < number_of_models; i++) {
if (iters < max_hyp_test_before_ver) {
current_score = _quality->getScore(models[i]);
} else {
if (is_magsac && iters % repeat_magsac == 0) {
if (!_local_optimization->refineModel
(models[i], best_score, models[i], current_score))
continue;
} else if (_model_verifier->isModelGood(models[i])) {
if (!_model_verifier->getScore(current_score)) {
if (_model_verifier->hasErrors())
current_score = _quality->getScore(_model_verifier->getErrors());
else current_score = _quality->getScore(models[i]);
}
} else continue;
}
if (current_score.isBetter(best_score)) {
if (_degeneracy->recoverIfDegenerate(sample, models[i],
non_degenerate_model, non_denegenerate_model_score)) {
// check if best non degenerate model is better than so far the best model
if (non_denegenerate_model_score.isBetter(best_score))
max_iters = update_best(non_degenerate_model, non_denegenerate_model_score);
else continue;
} else max_iters = update_best(models[i], current_score);
if (LO && iters >= max_iters_before_LO) {
// do magsac if it wasn't already run
if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue; // magsac has already run
was_LO_run = true;
// update model by Local optimization
if (_local_optimization->refineModel
(best_model, best_score, lo_model, lo_score)) {
if (lo_score.isBetter(best_score)){
max_iters = update_best(lo_model, lo_score);
}
}
}
if (iters > max_iters)
break;
} // end of if so far the best score
} // end loop of number of models
if (LO && !was_LO_run && iters >= max_iters_before_LO) {
was_LO_run = true;
if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score))
if (lo_score.isBetter(best_score)){
max_iters = update_best(lo_model, lo_score);
}
}
} // end main while loop
final_iters = iters;
} else {
const int MAX_THREADS = getNumThreads();
const bool is_prosac = params->getSampler() == SamplingMethod::SAMPLING_PROSAC;
std::atomic_bool success(false);
std::atomic_int num_hypothesis_tested(0);
std::atomic_int thread_cnt(0);
std::vector<Score> best_scores(MAX_THREADS);
std::vector<Mat> best_models(MAX_THREADS);
Mutex mutex; // only for prosac
///////////////////////////////////////////////////////////////////////////////////////////////////////
parallel_for_(Range(0, MAX_THREADS), [&](const Range & /*range*/) {
if (!success) { // cover all if not success to avoid thread creating new variables
const int thread_rng_id = thread_cnt++;
int thread_state = state + 10*thread_rng_id;
Ptr<Estimator> estimator = _estimator->clone();
Ptr<Degeneracy> degeneracy = _degeneracy->clone(thread_state++);
Ptr<Quality> quality = _quality->clone();
Ptr<ModelVerifier> model_verifier = _model_verifier->clone(thread_state++); // update verifier
Ptr<LocalOptimization> local_optimization;
if (LO)
local_optimization = _local_optimization->clone(thread_state++);
Ptr<TerminationCriteria> termination_criteria = _termination_criteria->clone();
Ptr<Sampler> sampler;
if (!is_prosac)
sampler = _sampler->clone(thread_state);
Mat best_model_thread, non_degenerate_model, lo_model;
Score best_score_thread, current_score, non_denegenerate_model_score, lo_score,
best_score_all_threads;
std::vector<int> sample(estimator->getMinimalSampleSize());
std::vector<Mat> models(estimator->getMaxNumSolutions());
int iters, max_iters = params->getMaxIters();
auto update_best = [&] (const Score &new_score, const Mat &new_model) {
// copy new score to best score
best_score_thread = new_score;
best_scores[thread_rng_id] = best_score_thread;
// remember best model
new_model.copyTo(best_model_thread);
best_model_thread.copyTo(best_models[thread_rng_id]);
best_score_all_threads = best_score_thread;
// update upper bound of iterations
return termination_criteria->update
(best_model_thread, best_score_thread.inlier_number);
};
bool was_LO_run = false;
for (iters = 0; iters < max_iters && !success; iters++) {
success = num_hypothesis_tested++ > max_iters;
if (iters % 10) {
// Synchronize threads. just to speed verification of model.
int best_thread_idx = thread_rng_id;
bool updated = false;
for (int t = 0; t < MAX_THREADS; t++) {
if (best_scores[t].isBetter(best_score_all_threads)) {
best_score_all_threads = best_scores[t];
updated = true;
best_thread_idx = t;
}
}
if (updated && best_thread_idx != thread_rng_id) {
quality->setBestScore(best_score_all_threads.score);
model_verifier->update(best_score_all_threads.inlier_number);
}
}
if (is_prosac) {
// use global sampler
mutex.lock();
_sampler->generateSample(sample);
mutex.unlock();
} else sampler->generateSample(sample); // use local sampler
const int number_of_models = estimator->estimateModels(sample, models);
for (int i = 0; i < number_of_models; i++) {
if (iters < max_hyp_test_before_ver) {
current_score = quality->getScore(models[i]);
} else {
if (is_magsac && iters % repeat_magsac == 0) {
if (local_optimization && !local_optimization->refineModel
(models[i], best_score_thread, models[i], current_score))
continue;
} else if (model_verifier->isModelGood(models[i])) {
if (!model_verifier->getScore(current_score)) {
if (model_verifier->hasErrors())
current_score = quality->getScore(model_verifier->getErrors());
else current_score = quality->getScore(models[i]);
}
} else continue;
}
if (current_score.isBetter(best_score_all_threads)) {
if (degeneracy->recoverIfDegenerate(sample, models[i],
non_degenerate_model, non_denegenerate_model_score)) {
// check if best non degenerate model is better than so far the best model
if (non_denegenerate_model_score.isBetter(best_score_thread))
max_iters = update_best(non_denegenerate_model_score, non_degenerate_model);
else continue;
} else
max_iters = update_best(current_score, models[i]);
if (LO && iters >= max_iters_before_LO) {
// do magsac if it wasn't already run
if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue;
was_LO_run = true;
// update model by Local optimizaion
if (local_optimization->refineModel
(best_model_thread, best_score_thread, lo_model, lo_score))
if (lo_score.isBetter(best_score_thread)) {
max_iters = update_best(lo_score, lo_model);
}
}
if (num_hypothesis_tested > max_iters) {
success = true; break;
}
} // end of if so far the best score
} // end loop of number of models
if (LO && !was_LO_run && iters >= max_iters_before_LO) {
was_LO_run = true;
if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score))
if (lo_score.isBetter(best_score)){
max_iters = update_best(lo_score, lo_model);
}
}
} // end of loop over iters
}}); // end parallel
///////////////////////////////////////////////////////////////////////////////////////////////////////
// find best model from all threads' models
best_score = best_scores[0];
int best_thread_idx = 0;
for (int i = 1; i < MAX_THREADS; i++) {
if (best_scores[i].isBetter(best_score)) {
best_score = best_scores[i];
best_thread_idx = i;
}
}
best_model = best_models[best_thread_idx];
final_iters = num_hypothesis_tested;
}
if (best_model.empty())
return false;
// polish final model
if (params->getFinalPolisher() != PolishingMethod::NonePolisher) {
Mat polished_model;
Score polisher_score;
if (model_polisher->polishSoFarTheBestModel(best_model, best_score,
polished_model, polisher_score))
if (polisher_score.isBetter(best_score)) {
best_score = polisher_score;
polished_model.copyTo(best_model);
}
}
// ================= here is ending ransac main implementation ===========================
std::vector<bool> inliers_mask;
if (params->isMaskRequired()) {
inliers_mask = std::vector<bool>(points_size);
// get final inliers from the best model
_quality->getInliers(best_model, inliers_mask);
}
// Store results
ransac_output = RansacOutput::create(best_model, inliers_mask,
static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>
(std::chrono::steady_clock::now() - begin_time).count()), best_score.score,
best_score.inlier_number, final_iters, -1, -1);
return true;
}
};
/*
* pts1, pts2 are matrices either N x a, N x b or a x N or b x N, where N > a and N > b
* pts1 are image points, if pnp pts2 are object points otherwise - image points as well.
* output is matrix of size N x (a + b)
* return points_size = N
*/
int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp) {
Mat pts1 = pts1_.getMat(), pts2 = pts2_.getMat();
auto convertPoints = [] (Mat &points, int pt_dim) {
points.convertTo(points, CV_32F); // convert points to have float precision
if (points.channels() > 1)
points = points.reshape(1, (int)points.total()); // convert point to have 1 channel
if (points.rows < points.cols)
transpose(points, points); // transpose so points will be in rows
CV_CheckGE(points.cols, pt_dim, "Invalid dimension of point");
if (points.cols != pt_dim) // in case when image points are 3D convert them to 2D
points = points.colRange(0, pt_dim);
};
convertPoints(pts1, 2); // pts1 are always image points
convertPoints(pts2, ispnp ? 3 : 2); // for PnP points are 3D
// points are of size [Nx2 Nx2] = Nx4 for H, F, E
// points are of size [Nx2 Nx3] = Nx5 for PnP
hconcat(pts1, pts2, pts);
return pts.rows;
}
void saveMask (OutputArray mask, const std::vector<bool> &inliers_mask) {
if (mask.needed()) {
const int points_size = (int) inliers_mask.size();
Mat tmp_mask(points_size, 1, CV_8U);
auto * maskptr = tmp_mask.ptr<uchar>();
for (int i = 0; i < points_size; i++)
maskptr[i] = (uchar) inliers_mask[i];
tmp_mask.copyTo(mask);
}
}
void setParameters (Ptr<Model> ¶ms, EstimationMethod estimator, const UsacParams &usac_params,
bool mask_needed) {
params = Model::create(usac_params.threshold, estimator, usac_params.sampler,
usac_params.confidence, usac_params.maxIterations, usac_params.score);
params->setLocalOptimization(usac_params.loMethod);
params->setLOSampleSize(usac_params.loSampleSize);
params->setLOIterations(usac_params.loIterations);
params->setParallel(usac_params.isParallel);
params->setNeighborsType(usac_params.neighborsSearch);
params->setRandomGeneratorState(usac_params.randomGeneratorState);
params->maskRequired(mask_needed);
}
void setParameters (int flag, Ptr<Model> ¶ms, EstimationMethod estimator, double thr,
int max_iters, double conf, bool mask_needed) {
switch (flag) {
case USAC_DEFAULT:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO);
break;
case USAC_MAGSAC:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MAGSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_SIGMA);
params->setLOSampleSize(params->isHomography() ? 75 : 50);
params->setLOIterations(params->isHomography() ? 15 : 10);
break;
case USAC_PARALLEL:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setParallel(true);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
break;
case USAC_ACCURATE:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_GC);
params->setLOSampleSize(20);
params->setLOIterations(25);
break;
case USAC_FAST:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO);
params->setLOIterations(5);
params->setLOIterativeIters(3);
break;
case USAC_PROSAC:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_PROSAC, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
break;
case USAC_FM_8PTS:
params = Model::create(thr, EstimationMethod::Fundamental8,SamplingMethod::SAMPLING_UNIFORM,
conf, max_iters,ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
break;
default: CV_Error(cv::Error::StsBadFlag, "Incorrect flag for USAC!");
}
// do not do too many iterations for PnP
if (estimator == EstimationMethod::P3P) {
if (params->getLOInnerMaxIters() > 15)
params->setLOIterations(15);
params->setLOIterativeIters(0);
}
params->maskRequired(mask_needed);
}
Mat findHomography (InputArray srcPoints, InputArray dstPoints, int method, double thr,
OutputArray mask, const int max_iters, const double confidence) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod::Homography, thr, max_iters, confidence, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, srcPoints, dstPoints, params->getRandomGeneratorState(),
ransac_output, noArray(), noArray(), noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel() / ransac_output->getModel().at<double>(2,2);
}
if (mask.needed()){
mask.create(std::max(srcPoints.getMat().rows, srcPoints.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
Mat findFundamentalMat( InputArray points1, InputArray points2, int method, double thr,
double confidence, int max_iters, OutputArray mask ) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod::Fundamental, thr, max_iters, confidence, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, points1, points2, params->getRandomGeneratorState(),
ransac_output, noArray(), noArray(), noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel();
}
if (mask.needed()){
mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
Mat findEssentialMat (InputArray points1, InputArray points2, InputArray cameraMatrix1,
int method, double prob, double thr, OutputArray mask) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod::Essential, thr, 1000, prob, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, points1, points2, params->getRandomGeneratorState(),
ransac_output, cameraMatrix1, cameraMatrix1, noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel();
}
if (mask.needed()){
mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec,
bool /*useExtrinsicGuess*/, int max_iters, float thr, double conf,
OutputArray inliers, int method) {
Ptr<Model> params;
setParameters(method, params, cameraMatrix.empty() ? EstimationMethod ::P6P : EstimationMethod ::P3P,
thr, max_iters, conf, inliers.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, imagePoints, objectPoints, params->getRandomGeneratorState(),
ransac_output, cameraMatrix, noArray(), distCoeffs, noArray())) {
if (inliers.needed()) {
const auto &inliers_mask = ransac_output->getInliersMask();
Mat inliers_;
for (int i = 0; i < (int)inliers_mask.size(); i++)
if (inliers_mask[i])
inliers_.push_back(i);
inliers_.copyTo(inliers);
}
const Mat &model = ransac_output->getModel();
model.col(0).copyTo(rvec);
model.col(1).copyTo(tvec);
return true;
}
return false;
}
Mat estimateAffine2D(InputArray from, InputArray to, OutputArray mask, int method,
double thr, int max_iters, double conf, int /*refineIters*/) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod ::Affine, thr, max_iters, conf, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, from, to, params->getRandomGeneratorState(),
ransac_output, noArray(), noArray(), noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel().rowRange(0,2);
}
if (mask.needed()){
mask.create(std::max(from.getMat().rows, from.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
class ModelImpl : public Model {
private:
// main parameters:
double threshold, confidence;
int sample_size, max_iterations;
EstimationMethod estimator;
SamplingMethod sampler;
ScoreMethod score;
// for neighborhood graph
int k_nearest_neighbors = 8;//, flann_search_params = 5, num_kd_trees = 1; // for FLANN
int cell_size = 50; // pixels, for grid neighbors searching
int radius = 30; // pixels, for radius-search neighborhood graph
NeighborSearchMethod neighborsType = NeighborSearchMethod::NEIGH_GRID;
// Local Optimization parameters
LocalOptimMethod lo = LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO;
int lo_sample_size=16, lo_inner_iterations=15, lo_iterative_iterations=8,
lo_thr_multiplier=15, lo_iter_sample_size = 30;
// Graph cut parameters
const double spatial_coherence_term = 0.975;
// apply polisher for final RANSAC model
PolishingMethod polisher = PolishingMethod ::LSQPolisher;
// preemptive verification test
VerificationMethod verifier = VerificationMethod ::SprtVerifier;
const int max_hypothesis_test_before_verification = 15;
// sprt parameters
// lower bound estimate is 1% of inliers
double sprt_eps = 0.01, sprt_delta = 0.008, avg_num_models, time_for_model_est;
// estimator error
ErrorMetric est_error;
// progressive napsac
double relax_coef = 0.1;
// for building neighborhood graphs
const std::vector<int> grid_cell_number = {16, 8, 4, 2};
//for final least squares polisher
int final_lsq_iters = 3;
bool need_mask = true, is_parallel = false;
int random_generator_state = 0;
const int max_iters_before_LO = 100;
// magsac parameters:
int DoF = 2;
double sigma_quantile = 3.04, upper_incomplete_of_sigma_quantile = 0.00419,
lower_incomplete_of_sigma_quantile = 0.8629, C = 0.5, maximum_thr = 7.5;
public:
ModelImpl (double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_=0.95,
int max_iterations_=5000, ScoreMethod score_ =ScoreMethod::SCORE_METHOD_MSAC) {
estimator = estimator_;
sampler = sampler_;
confidence = confidence_;
max_iterations = max_iterations_;
score = score_;
switch (estimator_) {
// time for model estimation is basically a ratio of time need to estimate a model to
// time needed to verify if a point is consistent with this model
case (EstimationMethod::Affine):
avg_num_models = 1; time_for_model_est = 50;
sample_size = 3; est_error = ErrorMetric ::FORW_REPR_ERR; break;
case (EstimationMethod::Homography):
avg_num_models = 1; time_for_model_est = 150;
sample_size = 4; est_error = ErrorMetric ::FORW_REPR_ERR; break;
case (EstimationMethod::Fundamental):
avg_num_models = 2.38; time_for_model_est = 180; maximum_thr = 2.5;
sample_size = 7; est_error = ErrorMetric ::SAMPSON_ERR; break;
case (EstimationMethod::Fundamental8):
avg_num_models = 1; time_for_model_est = 100; maximum_thr = 2.5;
sample_size = 8; est_error = ErrorMetric ::SAMPSON_ERR; break;
case (EstimationMethod::Essential):
avg_num_models = 3.93; time_for_model_est = 1000; maximum_thr = 2.5;
sample_size = 5; est_error = ErrorMetric ::SGD_ERR; break;
case (EstimationMethod::P3P):
avg_num_models = 1.38; time_for_model_est = 800;
sample_size = 3; est_error = ErrorMetric ::RERPOJ; break;
case (EstimationMethod::P6P):
avg_num_models = 1; time_for_model_est = 300;
sample_size = 6; est_error = ErrorMetric ::RERPOJ; break;
default: CV_Error(cv::Error::StsNotImplemented, "Estimator has not implemented yet!");
}
if (estimator_ == EstimationMethod::P3P || estimator_ == EstimationMethod::P6P) {
neighborsType = NeighborSearchMethod::NEIGH_FLANN_KNN;
k_nearest_neighbors = 2;
}
if (estimator == EstimationMethod::Fundamental || estimator == EstimationMethod::Essential) {
lo_sample_size = 21;
lo_thr_multiplier = 10;
}
if (estimator == EstimationMethod::Homography)
maximum_thr = 8.;
threshold = threshold_;
}
void setVerifier (VerificationMethod verifier_) override { verifier = verifier_; }
void setPolisher (PolishingMethod polisher_) override { polisher = polisher_; }
void setParallel (bool is_parallel_) override { is_parallel = is_parallel_; }
void setError (ErrorMetric error_) override { est_error = error_; }
void setLocalOptimization (LocalOptimMethod lo_) override { lo = lo_; }
void setKNearestNeighhbors (int knn_) override { k_nearest_neighbors = knn_; }
void setNeighborsType (NeighborSearchMethod neighbors) override { neighborsType = neighbors; }
void setCellSize (int cell_size_) override { cell_size = cell_size_; }
void setLOIterations (int iters) override { lo_inner_iterations = iters; }
void setLOIterativeIters (int iters) override {lo_iterative_iterations = iters; }
void setLOSampleSize (int lo_sample_size_) override { lo_sample_size = lo_sample_size_; }
void setThresholdMultiplierLO (double thr_mult) override { lo_thr_multiplier = (int) round(thr_mult); }
void maskRequired (bool need_mask_) override { need_mask = need_mask_; }
void setRandomGeneratorState (int state) override { random_generator_state = state; }
bool isMaskRequired () const override { return need_mask; }
NeighborSearchMethod getNeighborsSearch () const override { return neighborsType; }
int getKNN () const override { return k_nearest_neighbors; }
ErrorMetric getError () const override { return est_error; }
EstimationMethod getEstimator () const override { return estimator; }
int getSampleSize () const override { return sample_size; }
int getFinalLSQIterations () const override { return final_lsq_iters; }
int getDegreesOfFreedom () const override { return DoF; }
double getSigmaQuantile () const override { return sigma_quantile; }
double getUpperIncompleteOfSigmaQuantile () const override {
return upper_incomplete_of_sigma_quantile;
}
double getLowerIncompleteOfSigmaQuantile () const override {
return lower_incomplete_of_sigma_quantile;
}
double getC () const override { return C; }
double getMaximumThreshold () const override { return maximum_thr; }
double getGraphCutSpatialCoherenceTerm () const override { return spatial_coherence_term; }
int getLOSampleSize () const override { return lo_sample_size; }
int getMaxNumHypothesisToTestBeforeRejection() const override {
return max_hypothesis_test_before_verification;
}
PolishingMethod getFinalPolisher () const override { return polisher; }
int getLOThresholdMultiplier() const override { return lo_thr_multiplier; }
int getLOIterativeSampleSize() const override { return lo_iter_sample_size; }
int getLOIterativeMaxIters() const override { return lo_iterative_iterations; }
int getLOInnerMaxIters() const override { return lo_inner_iterations; }
LocalOptimMethod getLO () const override { return lo; }
ScoreMethod getScore () const override { return score; }
int getMaxIters () const override { return max_iterations; }
double getConfidence () const override { return confidence; }
double getThreshold () const override { return threshold; }
VerificationMethod getVerifier () const override { return verifier; }
SamplingMethod getSampler () const override { return sampler; }
int getRandomGeneratorState () const override { return random_generator_state; }
int getMaxItersBeforeLO () const override { return max_iters_before_LO; }
double getSPRTdelta () const override { return sprt_delta; }
double getSPRTepsilon () const override { return sprt_eps; }
double getSPRTavgNumModels () const override { return avg_num_models; }
int getCellSize () const override { return cell_size; }
int getGraphRadius() const override { return radius; }
double getTimeForModelEstimation () const override { return time_for_model_est; }
double getRelaxCoef () const override { return relax_coef; }
const std::vector<int> &getGridCellNumber () const override { return grid_cell_number; }
bool isParallel () const override { return is_parallel; }
bool isFundamental () const override {
return estimator == EstimationMethod ::Fundamental ||
estimator == EstimationMethod ::Fundamental8;
}
bool isHomography () const override { return estimator == EstimationMethod ::Homography; }
bool isEssential () const override { return estimator == EstimationMethod ::Essential; }
bool isPnP() const override {
return estimator == EstimationMethod ::P3P || estimator == EstimationMethod ::P6P;
}
};
Ptr<Model> Model::create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_,
double confidence_, int max_iterations_, ScoreMethod score_) {
return makePtr<ModelImpl>(threshold_, estimator_, sampler_, confidence_,
max_iterations_, score_);
}
bool run (const Ptr<const Model> ¶ms, InputArray points1, InputArray points2, int state,
Ptr<RansacOutput> &ransac_output, InputArray K1_, InputArray K2_,
InputArray dist_coeff1, InputArray dist_coeff2) {
Ptr<Error> error;
Ptr<Estimator> estimator;
Ptr<NeighborhoodGraph> graph;
Ptr<Degeneracy> degeneracy;
Ptr<Quality> quality;
Ptr<ModelVerifier> verifier;
Ptr<Sampler> sampler;
Ptr<RandomGenerator> lo_sampler;
Ptr<TerminationCriteria> termination;
Ptr<LocalOptimization> lo;
Ptr<FinalModelPolisher> polisher;
Ptr<MinimalSolver> min_solver;
Ptr<NonMinimalSolver> non_min_solver;
Mat points, K1, K2, calib_points, undist_points1, undist_points2;
int points_size;
double threshold = params->getThreshold(), max_thr = params->getMaximumThreshold();
const int min_sample_size = params->getSampleSize();
if (params->isPnP()) {
if (! K1_.empty()) {
K1 = K1_.getMat(); K1.convertTo(K1, CV_64F);
if (! dist_coeff1.empty()) {
// undistortPoints also calibrate points using K
if (points1.isContinuous())
undistortPoints(points1, undist_points1, K1_, dist_coeff1);
else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1);
points_size = mergePoints(undist_points1, points2, points, true);
Utils::normalizeAndDecalibPointsPnP (K1, points, calib_points);
} else {
points_size = mergePoints(points1, points2, points, true);
Utils::calibrateAndNormalizePointsPnP(K1, points, calib_points);
}
} else
points_size = mergePoints(points1, points2, points, true);
} else {
if (params->isEssential()) {
CV_CheckEQ((int)(!K1_.empty() && !K2_.empty()), 1, "Intrinsic matrix must not be empty!");
K1 = K1_.getMat(); K1.convertTo(K1, CV_64F);
K2 = K2_.getMat(); K2.convertTo(K2, CV_64F);
if (! dist_coeff1.empty() || ! dist_coeff2.empty()) {
// undistortPoints also calibrate points using K
if (points1.isContinuous())
undistortPoints(points1, undist_points1, K1_, dist_coeff1);
else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1);
if (points2.isContinuous())
undistortPoints(points2, undist_points2, K2_, dist_coeff2);
else undistortPoints(points2.getMat().clone(), undist_points2, K2_, dist_coeff2);
points_size = mergePoints(undist_points1, undist_points2, calib_points, false);
} else {
points_size = mergePoints(points1, points2, points, false);
Utils::calibratePoints(K1, K2, points, calib_points);
}
threshold = Utils::getCalibratedThreshold(threshold, K1, K2);
max_thr = Utils::getCalibratedThreshold(max_thr, K1, K2);
} else
points_size = mergePoints(points1, points2, points, false);
}
// Since error function output squared error distance, so make
// threshold squared as well
threshold *= threshold;
if (params->getSampler() == SamplingMethod::SAMPLING_NAPSAC || params->getLO() == LocalOptimMethod::LOCAL_OPTIM_GC) {
if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_GRID) {
graph = GridNeighborhoodGraph::create(points, points_size,
params->getCellSize(), params->getCellSize(),
params->getCellSize(), params->getCellSize(), 10);
} else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_KNN) {
graph = FlannNeighborhoodGraph::create(points, points_size,params->getKNN(), false, 5, 1);
} else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_RADIUS) {
graph = RadiusSearchNeighborhoodGraph::create(points, points_size,
params->getGraphRadius(), 5, 1);
} else CV_Error(cv::Error::StsNotImplemented, "Graph type is not implemented!");
}
std::vector<Ptr<NeighborhoodGraph>> layers;
if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) {
CV_CheckEQ((int)params->isPnP(), 0, "ProgressiveNAPSAC for PnP is not implemented!");
const auto &cell_number_per_layer = params->getGridCellNumber();
layers.reserve(cell_number_per_layer.size());
const auto * const pts = (float *) points.data;
float img1_width = 0, img1_height = 0, img2_width = 0, img2_height = 0;
for (int i = 0; i < 4 * points_size; i += 4) {
if (pts[i ] > img1_width ) img1_width = pts[i ];
if (pts[i + 1] > img1_height) img1_height = pts[i + 1];
if (pts[i + 2] > img2_width ) img2_width = pts[i + 2];
if (pts[i + 3] > img2_height) img2_height = pts[i + 3];
}
// Create grid graphs (overlapping layes of given cell numbers)
for (int layer_idx = 0; layer_idx < (int)cell_number_per_layer.size(); layer_idx++) {
const int cell_number = cell_number_per_layer[layer_idx];
if (layer_idx > 0)
if (cell_number_per_layer[layer_idx-1] <= cell_number)
CV_Error(cv::Error::StsError, "Progressive NAPSAC sampler: "
"Cell number in layers must be in decreasing order!");
layers.emplace_back(GridNeighborhoodGraph::create(points, points_size,
(int)(img1_width / (float)cell_number), (int)(img1_height / (float)cell_number),
(int)(img2_width / (float)cell_number), (int)(img2_height / (float)cell_number), 10));
}
}
// update points by calibrated for Essential matrix after graph is calculated
if (params->isEssential()) {
points = calib_points;
// if maximum calibrated threshold significanlty differs threshold then set upper bound
if (max_thr > 10*threshold)
max_thr = sqrt(10*threshold); // max thr will be squared after
}
if (max_thr < threshold)
max_thr = threshold;
switch (params->getError()) {
case ErrorMetric::SYMM_REPR_ERR:
error = ReprojectionErrorSymmetric::create(points); break;
case ErrorMetric::FORW_REPR_ERR:
if (params->getEstimator() == EstimationMethod::Affine)
error = ReprojectionErrorAffine::create(points);
else error = ReprojectionErrorForward::create(points);
break;
case ErrorMetric::SAMPSON_ERR:
error = SampsonError::create(points); break;
case ErrorMetric::SGD_ERR:
error = SymmetricGeometricDistance::create(points); break;
case ErrorMetric::RERPOJ:
error = ReprojectionErrorPmatrix::create(points); break;
default: CV_Error(cv::Error::StsNotImplemented , "Error metric is not implemented!");
}
switch (params->getScore()) {
case ScoreMethod::SCORE_METHOD_RANSAC :
quality = RansacQuality::create(points_size, threshold, error); break;
case ScoreMethod::SCORE_METHOD_MSAC :
quality = MsacQuality::create(points_size, threshold, error); break;
case ScoreMethod::SCORE_METHOD_MAGSAC :
quality = MagsacQuality::create(max_thr, points_size, error,
threshold, params->getDegreesOfFreedom(), params->getSigmaQuantile(),
params->getUpperIncompleteOfSigmaQuantile(),
params->getLowerIncompleteOfSigmaQuantile(), params->getC()); break;
case ScoreMethod::SCORE_METHOD_LMEDS :
quality = LMedsQuality::create(points_size, threshold, error); break;
default: CV_Error(cv::Error::StsNotImplemented, "Score is not imeplemeted!");
}
if (params->isHomography()) {
degeneracy = HomographyDegeneracy::create(points);
min_solver = HomographyMinimalSolver4ptsGEM::create(points);
non_min_solver = HomographyNonMinimalSolver::create(points);
estimator = HomographyEstimator::create(min_solver, non_min_solver, degeneracy);
} else if (params->isFundamental()) {
degeneracy = FundamentalDegeneracy::create(state++, quality, points, min_sample_size, 5. /*sqr homogr thr*/);
if(min_sample_size == 7) min_solver = FundamentalMinimalSolver7pts::create(points);
else min_solver = FundamentalMinimalSolver8pts::create(points);
non_min_solver = FundamentalNonMinimalSolver::create(points);
estimator = FundamentalEstimator::create(min_solver, non_min_solver, degeneracy);
} else if (params->isEssential()) {
degeneracy = EssentialDegeneracy::create(points, min_sample_size);
min_solver = EssentialMinimalSolverStewenius5pts::create(points);
non_min_solver = EssentialNonMinimalSolver::create(points);
estimator = EssentialEstimator::create(min_solver, non_min_solver, degeneracy);
} else if (params->isPnP()) {
degeneracy = makePtr<Degeneracy>();
if (min_sample_size == 3) {
non_min_solver = DLSPnP::create(points, calib_points, K1);
min_solver = P3PSolver::create(points, calib_points, K1);
} else {
min_solver = PnPMinimalSolver6Pts::create(points);
non_min_solver = PnPNonMinimalSolver::create(points);
}
estimator = PnPEstimator::create(min_solver, non_min_solver);
} else if (params->getEstimator() == EstimationMethod::Affine) {
degeneracy = makePtr<Degeneracy>();
min_solver = AffineMinimalSolver::create(points);
non_min_solver = AffineNonMinimalSolver::create(points);
estimator = AffineEstimator::create(min_solver, non_min_solver);
} else CV_Error(cv::Error::StsNotImplemented, "Estimator not implemented!");
switch (params->getSampler()) {
case SamplingMethod::SAMPLING_UNIFORM:
sampler = UniformSampler::create(state++, min_sample_size, points_size); break;
case SamplingMethod::SAMPLING_PROSAC:
sampler = ProsacSampler::create(state++, points_size, min_sample_size, 200000); break;
case SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC:
sampler = ProgressiveNapsac::create(state++, points_size, min_sample_size, layers, 20); break;
case SamplingMethod::SAMPLING_NAPSAC:
sampler = NapsacSampler::create(state++, points_size, min_sample_size, graph); break;
default: CV_Error(cv::Error::StsNotImplemented, "Sampler is not implemented!");
}
switch (params->getVerifier()) {
case VerificationMethod::NullVerifier: verifier = ModelVerifier::create(); break;
case VerificationMethod::SprtVerifier:
verifier = SPRT::create(state++, error, points_size, params->getScore() == ScoreMethod ::SCORE_METHOD_MAGSAC ? max_thr : threshold,
params->getSPRTepsilon(), params->getSPRTdelta(), params->getTimeForModelEstimation(),
params->getSPRTavgNumModels(), params->getScore()); break;
default: CV_Error(cv::Error::StsNotImplemented, "Verifier is not imeplemented!");
}
if (params->getSampler() == SamplingMethod::SAMPLING_PROSAC) {
termination = ProsacTerminationCriteria::create(sampler.dynamicCast<ProsacSampler>(), error,
points_size, min_sample_size, params->getConfidence(),
params->getMaxIters(), 100, 0.05, 0.05, threshold);
} else if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) {
if (params->getVerifier() == VerificationMethod::SprtVerifier)
termination = SPRTPNapsacTermination::create(((SPRT *)verifier.get())->getSPRTvector(),
params->getConfidence(), points_size, min_sample_size,
params->getMaxIters(), params->getRelaxCoef());
else
termination = StandardTerminationCriteria::create (params->getConfidence(),
points_size, min_sample_size, params->getMaxIters());
} else if (params->getVerifier() == VerificationMethod::SprtVerifier) {
termination = SPRTTermination::create(((SPRT *) verifier.get())->getSPRTvector(),
params->getConfidence(), points_size, min_sample_size, params->getMaxIters());
} else
termination = StandardTerminationCriteria::create
(params->getConfidence(), points_size, min_sample_size, params->getMaxIters());
if (params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL) {
lo_sampler = UniformRandomGenerator::create(state++, points_size, params->getLOSampleSize());
switch (params->getLO()) {
case LocalOptimMethod::LOCAL_OPTIM_INNER_LO:
lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler,
points_size, threshold, false, params->getLOIterativeSampleSize(),
params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(),
params->getLOThresholdMultiplier()); break;
case LocalOptimMethod::LOCAL_OPTIM_INNER_AND_ITER_LO:
lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler,
points_size, threshold, true, params->getLOIterativeSampleSize(),
params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(),
params->getLOThresholdMultiplier()); break;
case LocalOptimMethod::LOCAL_OPTIM_GC:
lo = GraphCut::create(estimator, error, quality, graph, lo_sampler, threshold,
params->getGraphCutSpatialCoherenceTerm(), params->getLOInnerMaxIters()); break;
case LocalOptimMethod::LOCAL_OPTIM_SIGMA:
lo = SigmaConsensus::create(estimator, error, quality, verifier,
params->getLOSampleSize(), params->getLOInnerMaxIters(),
params->getDegreesOfFreedom(), params->getSigmaQuantile(),
params->getUpperIncompleteOfSigmaQuantile(), params->getC(), max_thr); break;
default: CV_Error(cv::Error::StsNotImplemented , "Local Optimization is not implemented!");
}
}
if (params->getFinalPolisher() == PolishingMethod::LSQPolisher)
polisher = LeastSquaresPolishing::create(estimator, quality, params->getFinalLSQIterations());
Ransac ransac (params, points_size, estimator, quality, sampler,
termination, verifier, degeneracy, lo, polisher, params->isParallel(), state);
if (ransac.run(ransac_output)) {
if (params->isPnP()) {
// convert R to rodrigues and back and recalculate inliers which due to numerical
// issues can differ
Mat out, R, newR, newP, t, rvec;
if (K1.empty()) {
usac::Utils::decomposeProjection (ransac_output->getModel(), K1, R, t);
Rodrigues(R, rvec);
hconcat(rvec, t, out);
hconcat(out, K1, out);
} else {
const Mat Rt = K1.inv() * ransac_output->getModel();
t = Rt.col(3);
Rodrigues(Rt.colRange(0,3), rvec);
hconcat(rvec, t, out);
}
Rodrigues(rvec, newR);
hconcat(K1 * newR, K1 * t, newP);
std::vector<bool> inliers_mask(points_size);
quality->getInliers(newP, inliers_mask);
ransac_output = RansacOutput::create(out, inliers_mask, 0,0,0,0,0,0);
}
return true;
}
return false;
}
}}