ransac_solvers.cpp 52.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "../precomp.hpp"
#include "../usac.hpp"
#include <atomic>

namespace cv { namespace usac {
int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp);
void setParameters (int flag, Ptr<Model> &params, EstimationMethod estimator, double thr,
                    int max_iters, double conf, bool mask_needed);

class RansacOutputImpl : public RansacOutput {
private:
    Mat model;
    // vector of number_inliers size
    std::vector<int> inliers;
    // vector of points size, true if inlier, false-outlier
    std::vector<bool> inliers_mask;
    // vector of points size, value of i-th index corresponds to error of i-th point if i is inlier.
    std::vector<double> errors;
    // the best found score of RANSAC
    double score;

    int seconds, milliseconds, microseconds;
    int time_mcs, number_inliers, number_estimated_models, number_good_models;
    int number_iterations; // number of iterations of main RANSAC
public:
    RansacOutputImpl (const Mat &model_, const std::vector<bool> &inliers_mask_,
            int time_mcs_, double score_, int number_inliers_, int number_iterations_,
            int number_estimated_models_, int number_good_models_) {

        model_.copyTo(model);
        inliers_mask = inliers_mask_;
        time_mcs = time_mcs_;
        score = score_;
        number_inliers = number_inliers_;
        number_iterations = number_iterations_;
        number_estimated_models = number_estimated_models_;
        number_good_models = number_good_models_;
        microseconds = time_mcs % 1000;
        milliseconds = ((time_mcs - microseconds)/1000) % 1000;
        seconds = ((time_mcs - 1000*milliseconds - microseconds)/(1000*1000)) % 60;
    }

    /*
     * Return inliers' indices.
     * size of vector = number of inliers
     */
    const std::vector<int> &getInliers() override {
        if (inliers.empty()) {
            inliers.reserve(inliers_mask.size());
            int pt_cnt = 0;
            for (bool is_inlier : inliers_mask) {
                if (is_inlier)
                    inliers.emplace_back(pt_cnt);
                pt_cnt++;
            }
        }
        return inliers;
    }

    // Return inliers mask. Vector of points size. 1-inlier, 0-outlier.
    const std::vector<bool> &getInliersMask() const override { return inliers_mask; }

    int getTimeMicroSeconds() const override {return time_mcs; }
    int getTimeMicroSeconds1() const override {return microseconds; }
    int getTimeMilliSeconds2() const override {return milliseconds; }
    int getTimeSeconds3() const override {return seconds; }
    int getNumberOfInliers() const override { return number_inliers; }
    int getNumberOfMainIterations() const override { return number_iterations; }
    int getNumberOfGoodModels () const override { return number_good_models; }
    int getNumberOfEstimatedModels () const override { return number_estimated_models; }
    const Mat &getModel() const override { return model; }
};

Ptr<RansacOutput> RansacOutput::create(const Mat &model_, const std::vector<bool> &inliers_mask_,
        int time_mcs_, double score_, int number_inliers_, int number_iterations_,
        int number_estimated_models_, int number_good_models_) {
    return makePtr<RansacOutputImpl>(model_, inliers_mask_, time_mcs_, score_, number_inliers_,
            number_iterations_, number_estimated_models_, number_good_models_);
}

class Ransac {
protected:
    const Ptr<const Model> params;
    const Ptr<const Estimator> _estimator;
    const Ptr<Quality> _quality;
    const Ptr<Sampler> _sampler;
    const Ptr<TerminationCriteria> _termination_criteria;
    const Ptr<ModelVerifier> _model_verifier;
    const Ptr<Degeneracy> _degeneracy;
    const Ptr<LocalOptimization> _local_optimization;
    const Ptr<FinalModelPolisher> model_polisher;

    const int points_size, state;
    const bool parallel;
public:

    Ransac (const Ptr<const Model> &params_, int points_size_, const Ptr<const Estimator> &estimator_, const Ptr<Quality> &quality_,
            const Ptr<Sampler> &sampler_, const Ptr<TerminationCriteria> &termination_criteria_,
            const Ptr<ModelVerifier> &model_verifier_, const Ptr<Degeneracy> &degeneracy_,
            const Ptr<LocalOptimization> &local_optimization_, const Ptr<FinalModelPolisher> &model_polisher_,
            bool parallel_=false, int state_ = 0) :

            params (params_), _estimator (estimator_), _quality (quality_), _sampler (sampler_),
            _termination_criteria (termination_criteria_), _model_verifier (model_verifier_),
            _degeneracy (degeneracy_), _local_optimization (local_optimization_),
            model_polisher (model_polisher_), points_size (points_size_), state(state_),
            parallel(parallel_) {}

    bool run(Ptr<RansacOutput> &ransac_output) {
        if (points_size < params->getSampleSize())
            return false;

        const auto begin_time = std::chrono::steady_clock::now();

        // check if LO
        const bool LO = params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL;
        const bool is_magsac = params->getLO() == LocalOptimMethod::LOCAL_OPTIM_SIGMA;
        const int max_hyp_test_before_ver = params->getMaxNumHypothesisToTestBeforeRejection();
        const int repeat_magsac = 10, max_iters_before_LO = params->getMaxItersBeforeLO();
        Score best_score;
        Mat best_model;
        int final_iters;

        if (! parallel) {
            auto update_best = [&] (const Mat &new_model, const Score &new_score) {
                best_score = new_score;
                // remember best model
                new_model.copyTo(best_model);
                // update quality and verifier to save evaluation time of a model
                _quality->setBestScore(best_score.score);
                // update verifier
                _model_verifier->update(best_score.inlier_number);
                // update upper bound of iterations
                return _termination_criteria->update(best_model, best_score.inlier_number);
            };
            bool was_LO_run = false;
            Mat non_degenerate_model, lo_model;
            Score current_score, lo_score, non_denegenerate_model_score;

            // reallocate memory for models
            std::vector<Mat> models(_estimator->getMaxNumSolutions());

            // allocate memory for sample
            std::vector<int> sample(_estimator->getMinimalSampleSize());
            int iters = 0, max_iters = params->getMaxIters();
            for (; iters < max_iters; iters++) {
                _sampler->generateSample(sample);
                const int number_of_models = _estimator->estimateModels(sample, models);

                for (int i = 0; i < number_of_models; i++) {
                    if (iters < max_hyp_test_before_ver) {
                        current_score = _quality->getScore(models[i]);
                    } else {
                        if (is_magsac && iters % repeat_magsac == 0) {
                            if (!_local_optimization->refineModel
                                    (models[i], best_score, models[i], current_score))
                                continue;
                        } else if (_model_verifier->isModelGood(models[i])) {
                            if (!_model_verifier->getScore(current_score)) {
                                if (_model_verifier->hasErrors())
                                    current_score = _quality->getScore(_model_verifier->getErrors());
                                else current_score = _quality->getScore(models[i]);
                            }
                        } else continue;
                    }

                    if (current_score.isBetter(best_score)) {
                        if (_degeneracy->recoverIfDegenerate(sample, models[i],
                                non_degenerate_model, non_denegenerate_model_score)) {
                            // check if best non degenerate model is better than so far the best model
                            if (non_denegenerate_model_score.isBetter(best_score))
                                max_iters = update_best(non_degenerate_model, non_denegenerate_model_score);
                            else continue;
                        } else max_iters = update_best(models[i], current_score);

                        if (LO && iters >= max_iters_before_LO) {
                            // do magsac if it wasn't already run
                            if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue; // magsac has already run
                            was_LO_run = true;
                            // update model by Local optimization
                            if (_local_optimization->refineModel
                                    (best_model, best_score, lo_model, lo_score)) {
                                if (lo_score.isBetter(best_score)){
                                    max_iters = update_best(lo_model, lo_score);
                                }
                            }
                        }
                        if (iters > max_iters)
                            break;
                    } // end of if so far the best score
                } // end loop of number of models
                if (LO && !was_LO_run && iters >= max_iters_before_LO) {
                    was_LO_run = true;
                    if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score))
                        if (lo_score.isBetter(best_score)){
                            max_iters = update_best(lo_model, lo_score);
                        }
                }
            } // end main while loop

            final_iters = iters;
        } else {
            const int MAX_THREADS = getNumThreads();
            const bool is_prosac = params->getSampler() == SamplingMethod::SAMPLING_PROSAC;

            std::atomic_bool success(false);
            std::atomic_int num_hypothesis_tested(0);
            std::atomic_int thread_cnt(0);
            std::vector<Score> best_scores(MAX_THREADS);
            std::vector<Mat> best_models(MAX_THREADS);

            Mutex mutex; // only for prosac

            ///////////////////////////////////////////////////////////////////////////////////////////////////////
            parallel_for_(Range(0, MAX_THREADS), [&](const Range & /*range*/) {
            if (!success) { // cover all if not success to avoid thread creating new variables
                const int thread_rng_id = thread_cnt++;
                int thread_state = state + 10*thread_rng_id;

                Ptr<Estimator> estimator = _estimator->clone();
                Ptr<Degeneracy> degeneracy = _degeneracy->clone(thread_state++);
                Ptr<Quality> quality = _quality->clone();
                Ptr<ModelVerifier> model_verifier = _model_verifier->clone(thread_state++); // update verifier
                Ptr<LocalOptimization> local_optimization;
                if (LO)
                    local_optimization = _local_optimization->clone(thread_state++);
                Ptr<TerminationCriteria> termination_criteria = _termination_criteria->clone();
                Ptr<Sampler> sampler;
                if (!is_prosac)
                   sampler = _sampler->clone(thread_state);

                Mat best_model_thread, non_degenerate_model, lo_model;
                Score best_score_thread, current_score, non_denegenerate_model_score, lo_score,
                      best_score_all_threads;
                std::vector<int> sample(estimator->getMinimalSampleSize());
                std::vector<Mat> models(estimator->getMaxNumSolutions());
                int iters, max_iters = params->getMaxIters();
                auto update_best = [&] (const Score &new_score, const Mat &new_model) {
                    // copy new score to best score
                    best_score_thread = new_score;
                    best_scores[thread_rng_id] = best_score_thread;
                    // remember best model
                    new_model.copyTo(best_model_thread);
                    best_model_thread.copyTo(best_models[thread_rng_id]);
                    best_score_all_threads = best_score_thread;
                    // update upper bound of iterations
                    return termination_criteria->update
                            (best_model_thread, best_score_thread.inlier_number);
                };

                bool was_LO_run = false;
                for (iters = 0; iters < max_iters && !success; iters++) {
                    success = num_hypothesis_tested++ > max_iters;

                    if (iters % 10) {
                        // Synchronize threads. just to speed verification of model.
                        int best_thread_idx = thread_rng_id;
                        bool updated = false;
                        for (int t = 0; t < MAX_THREADS; t++) {
                            if (best_scores[t].isBetter(best_score_all_threads)) {
                                best_score_all_threads = best_scores[t];
                                updated = true;
                                best_thread_idx = t;
                            }
                        }
                        if (updated && best_thread_idx != thread_rng_id) {
                            quality->setBestScore(best_score_all_threads.score);
                            model_verifier->update(best_score_all_threads.inlier_number);
                        }
                    }

                    if (is_prosac) {
                        // use global sampler
                        mutex.lock();
                        _sampler->generateSample(sample);
                        mutex.unlock();
                    } else sampler->generateSample(sample); // use local sampler

                    const int number_of_models = estimator->estimateModels(sample, models);
                    for (int i = 0; i < number_of_models; i++) {
                        if (iters < max_hyp_test_before_ver) {
                            current_score = quality->getScore(models[i]);
                        } else {
                            if (is_magsac && iters % repeat_magsac == 0) {
                                if (local_optimization && !local_optimization->refineModel
                                        (models[i], best_score_thread, models[i], current_score))
                                    continue;
                            } else if (model_verifier->isModelGood(models[i])) {
                                if (!model_verifier->getScore(current_score)) {
                                    if (model_verifier->hasErrors())
                                        current_score = quality->getScore(model_verifier->getErrors());
                                    else current_score = quality->getScore(models[i]);
                                }
                            } else continue;
                        }

                        if (current_score.isBetter(best_score_all_threads)) {
                            if (degeneracy->recoverIfDegenerate(sample, models[i],
                                        non_degenerate_model, non_denegenerate_model_score)) {
                                // check if best non degenerate model is better than so far the best model
                                if (non_denegenerate_model_score.isBetter(best_score_thread))
                                    max_iters = update_best(non_denegenerate_model_score, non_degenerate_model);
                                else continue;
                            } else
                                max_iters = update_best(current_score, models[i]);

                            if (LO && iters >= max_iters_before_LO) {
                                // do magsac if it wasn't already run
                                if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue;
                                was_LO_run = true;
                                // update model by Local optimizaion
                                if (local_optimization->refineModel
                                       (best_model_thread, best_score_thread, lo_model, lo_score))
                                    if (lo_score.isBetter(best_score_thread)) {
                                        max_iters = update_best(lo_score, lo_model);
                                    }
                            }
                            if (num_hypothesis_tested > max_iters) {
                                success = true; break;
                            }
                        } // end of if so far the best score
                    } // end loop of number of models
                    if (LO && !was_LO_run && iters >= max_iters_before_LO) {
                        was_LO_run = true;
                        if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score))
                            if (lo_score.isBetter(best_score)){
                                max_iters = update_best(lo_score, lo_model);
                            }
                    }
                } // end of loop over iters
            }}); // end parallel
            ///////////////////////////////////////////////////////////////////////////////////////////////////////
            // find best model from all threads' models
            best_score = best_scores[0];
            int best_thread_idx = 0;
            for (int i = 1; i < MAX_THREADS; i++) {
                if (best_scores[i].isBetter(best_score)) {
                    best_score = best_scores[i];
                    best_thread_idx = i;
                }
            }
            best_model = best_models[best_thread_idx];
            final_iters = num_hypothesis_tested;
        }

        if (best_model.empty())
            return false;

        // polish final model
        if (params->getFinalPolisher() != PolishingMethod::NonePolisher) {
            Mat polished_model;
            Score polisher_score;
            if (model_polisher->polishSoFarTheBestModel(best_model, best_score,
                     polished_model, polisher_score))
                if (polisher_score.isBetter(best_score)) {
                    best_score = polisher_score;
                    polished_model.copyTo(best_model);
                }
        }
        // ================= here is ending ransac main implementation ===========================
        std::vector<bool> inliers_mask;
        if (params->isMaskRequired()) {
            inliers_mask = std::vector<bool>(points_size);
            // get final inliers from the best model
            _quality->getInliers(best_model, inliers_mask);
        }
        // Store results
        ransac_output = RansacOutput::create(best_model, inliers_mask,
                static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>
                (std::chrono::steady_clock::now() - begin_time).count()), best_score.score,
                best_score.inlier_number, final_iters, -1, -1);
        return true;
    }
};

/*
 * pts1, pts2 are matrices either N x a, N x b or a x N or b x N, where N > a and N > b
 * pts1 are image points, if pnp pts2 are object points otherwise - image points as well.
 * output is matrix of size N x (a + b)
 * return points_size = N
 */
int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp) {
    Mat pts1 = pts1_.getMat(), pts2 = pts2_.getMat();
    auto convertPoints = [] (Mat &points, int pt_dim) {
        points.convertTo(points, CV_32F); // convert points to have float precision
        if (points.channels() > 1)
            points = points.reshape(1, (int)points.total()); // convert point to have 1 channel
        if (points.rows < points.cols)
            transpose(points, points); // transpose so points will be in rows
        CV_CheckGE(points.cols, pt_dim, "Invalid dimension of point");
        if (points.cols != pt_dim) // in case when image points are 3D convert them to 2D
            points = points.colRange(0, pt_dim);
    };

    convertPoints(pts1, 2); // pts1 are always image points
    convertPoints(pts2, ispnp ? 3 : 2); // for PnP points are 3D

    // points are of size [Nx2 Nx2] = Nx4 for H, F, E
    // points are of size [Nx2 Nx3] = Nx5 for PnP
    hconcat(pts1, pts2, pts);
    return pts.rows;
}

void saveMask (OutputArray mask, const std::vector<bool> &inliers_mask) {
    if (mask.needed()) {
        const int points_size = (int) inliers_mask.size();
        Mat tmp_mask(points_size, 1, CV_8U);
        auto * maskptr = tmp_mask.ptr<uchar>();
        for (int i = 0; i < points_size; i++)
            maskptr[i] = (uchar) inliers_mask[i];
        tmp_mask.copyTo(mask);
    }
}
void setParameters (Ptr<Model> &params, EstimationMethod estimator, const UsacParams &usac_params,
        bool mask_needed) {
    params = Model::create(usac_params.threshold, estimator, usac_params.sampler,
            usac_params.confidence, usac_params.maxIterations, usac_params.score);
    params->setLocalOptimization(usac_params.loMethod);
    params->setLOSampleSize(usac_params.loSampleSize);
    params->setLOIterations(usac_params.loIterations);
    params->setParallel(usac_params.isParallel);
    params->setNeighborsType(usac_params.neighborsSearch);
    params->setRandomGeneratorState(usac_params.randomGeneratorState);
    params->maskRequired(mask_needed);
}

void setParameters (int flag, Ptr<Model> &params, EstimationMethod estimator, double thr,
        int max_iters, double conf, bool mask_needed) {
    switch (flag) {
        case USAC_DEFAULT:
            params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
                                   ScoreMethod::SCORE_METHOD_MSAC);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO);
            break;
        case USAC_MAGSAC:
            params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
                                   ScoreMethod::SCORE_METHOD_MAGSAC);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_SIGMA);
            params->setLOSampleSize(params->isHomography() ? 75 : 50);
            params->setLOIterations(params->isHomography() ? 15 : 10);
            break;
        case USAC_PARALLEL:
            params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
                                   ScoreMethod::SCORE_METHOD_MSAC);
            params->setParallel(true);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
            break;
        case USAC_ACCURATE:
            params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
                                   ScoreMethod::SCORE_METHOD_MSAC);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_GC);
            params->setLOSampleSize(20);
            params->setLOIterations(25);
            break;
        case USAC_FAST:
            params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
                                   ScoreMethod::SCORE_METHOD_MSAC);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO);
            params->setLOIterations(5);
            params->setLOIterativeIters(3);
            break;
        case USAC_PROSAC:
            params = Model::create(thr, estimator, SamplingMethod::SAMPLING_PROSAC, conf, max_iters,
                                   ScoreMethod::SCORE_METHOD_MSAC);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
            break;
        case USAC_FM_8PTS:
            params = Model::create(thr, EstimationMethod::Fundamental8,SamplingMethod::SAMPLING_UNIFORM,
                    conf, max_iters,ScoreMethod::SCORE_METHOD_MSAC);
            params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
            break;
        default: CV_Error(cv::Error::StsBadFlag, "Incorrect flag for USAC!");
    }
    // do not do too many iterations for PnP
    if (estimator == EstimationMethod::P3P) {
        if (params->getLOInnerMaxIters() > 15)
            params->setLOIterations(15);
        params->setLOIterativeIters(0);
    }

    params->maskRequired(mask_needed);
}

Mat findHomography (InputArray srcPoints, InputArray dstPoints, int method, double thr,
        OutputArray mask, const int max_iters, const double confidence) {
    Ptr<Model> params;
    setParameters(method, params, EstimationMethod::Homography, thr, max_iters, confidence, mask.needed());
    Ptr<RansacOutput> ransac_output;
    if (run(params, srcPoints, dstPoints, params->getRandomGeneratorState(),
            ransac_output, noArray(), noArray(), noArray(), noArray())) {
        saveMask(mask, ransac_output->getInliersMask());
        return ransac_output->getModel() / ransac_output->getModel().at<double>(2,2);
    }
    if (mask.needed()){
        mask.create(std::max(srcPoints.getMat().rows, srcPoints.getMat().cols), 1, CV_8U);
        mask.setTo(Scalar::all(0));
    }
    return Mat();
}

Mat findFundamentalMat( InputArray points1, InputArray points2, int method, double thr,
        double confidence, int max_iters, OutputArray mask ) {
    Ptr<Model> params;
    setParameters(method, params, EstimationMethod::Fundamental, thr, max_iters, confidence, mask.needed());
    Ptr<RansacOutput> ransac_output;
    if (run(params, points1, points2, params->getRandomGeneratorState(),
            ransac_output, noArray(), noArray(), noArray(), noArray())) {
        saveMask(mask, ransac_output->getInliersMask());
        return ransac_output->getModel();
    }
    if (mask.needed()){
        mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U);
        mask.setTo(Scalar::all(0));
    }
    return Mat();
}

Mat findEssentialMat (InputArray points1, InputArray points2, InputArray cameraMatrix1,
        int method, double prob, double thr, OutputArray mask) {
    Ptr<Model> params;
    setParameters(method, params, EstimationMethod::Essential, thr, 1000, prob, mask.needed());
    Ptr<RansacOutput> ransac_output;
    if (run(params, points1, points2, params->getRandomGeneratorState(),
            ransac_output, cameraMatrix1, cameraMatrix1, noArray(), noArray())) {
        saveMask(mask, ransac_output->getInliersMask());
        return ransac_output->getModel();
    }
    if (mask.needed()){
        mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U);
        mask.setTo(Scalar::all(0));
    }
    return Mat();
}

bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
       InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec,
       bool /*useExtrinsicGuess*/, int max_iters, float thr, double conf,
       OutputArray inliers, int method) {
    Ptr<Model> params;
    setParameters(method, params, cameraMatrix.empty() ? EstimationMethod ::P6P : EstimationMethod ::P3P,
            thr, max_iters, conf, inliers.needed());
    Ptr<RansacOutput> ransac_output;
    if (run(params, imagePoints, objectPoints, params->getRandomGeneratorState(),
            ransac_output, cameraMatrix, noArray(), distCoeffs, noArray())) {
        if (inliers.needed()) {
            const auto &inliers_mask = ransac_output->getInliersMask();
            Mat inliers_;
            for (int i = 0; i < (int)inliers_mask.size(); i++)
                if (inliers_mask[i])
                    inliers_.push_back(i);
            inliers_.copyTo(inliers);
        }
        const Mat &model = ransac_output->getModel();
        model.col(0).copyTo(rvec);
        model.col(1).copyTo(tvec);
        return true;
    }
    return false;
}

Mat estimateAffine2D(InputArray from, InputArray to, OutputArray mask, int method,
        double thr, int max_iters, double conf, int /*refineIters*/) {
    Ptr<Model> params;
    setParameters(method, params, EstimationMethod ::Affine, thr, max_iters, conf, mask.needed());
    Ptr<RansacOutput> ransac_output;
    if (run(params, from, to, params->getRandomGeneratorState(),
            ransac_output, noArray(), noArray(), noArray(), noArray())) {
        saveMask(mask, ransac_output->getInliersMask());
        return ransac_output->getModel().rowRange(0,2);
    }
    if (mask.needed()){
        mask.create(std::max(from.getMat().rows, from.getMat().cols), 1, CV_8U);
        mask.setTo(Scalar::all(0));
    }
    return Mat();
}

class ModelImpl : public Model {
private:
    // main parameters:
    double threshold, confidence;
    int sample_size, max_iterations;

    EstimationMethod estimator;
    SamplingMethod sampler;
    ScoreMethod score;

    // for neighborhood graph
    int k_nearest_neighbors = 8;//, flann_search_params = 5, num_kd_trees = 1; // for FLANN
    int cell_size = 50; // pixels, for grid neighbors searching
    int radius = 30; // pixels, for radius-search neighborhood graph
    NeighborSearchMethod neighborsType = NeighborSearchMethod::NEIGH_GRID;

    // Local Optimization parameters
    LocalOptimMethod lo = LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO;
    int lo_sample_size=16, lo_inner_iterations=15, lo_iterative_iterations=8,
            lo_thr_multiplier=15, lo_iter_sample_size = 30;

    // Graph cut parameters
    const double spatial_coherence_term = 0.975;

    // apply polisher for final RANSAC model
    PolishingMethod polisher = PolishingMethod ::LSQPolisher;

    // preemptive verification test
    VerificationMethod verifier = VerificationMethod ::SprtVerifier;
    const int max_hypothesis_test_before_verification = 15;

    // sprt parameters
    // lower bound estimate is 1% of inliers
    double sprt_eps = 0.01, sprt_delta = 0.008, avg_num_models, time_for_model_est;

    // estimator error
    ErrorMetric est_error;

    // progressive napsac
    double relax_coef = 0.1;
    // for building neighborhood graphs
    const std::vector<int> grid_cell_number = {16, 8, 4, 2};

    //for final least squares polisher
    int final_lsq_iters = 3;

    bool need_mask = true, is_parallel = false;
    int random_generator_state = 0;
    const int max_iters_before_LO = 100;

    // magsac parameters:
    int DoF = 2;
    double sigma_quantile = 3.04, upper_incomplete_of_sigma_quantile = 0.00419,
        lower_incomplete_of_sigma_quantile = 0.8629, C = 0.5, maximum_thr = 7.5;
public:
    ModelImpl (double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_=0.95,
               int max_iterations_=5000, ScoreMethod score_ =ScoreMethod::SCORE_METHOD_MSAC) {
        estimator = estimator_;
        sampler = sampler_;
        confidence = confidence_;
        max_iterations = max_iterations_;
        score = score_;

        switch (estimator_) {
            // time for model estimation is basically a ratio of time need to estimate a model to
            // time needed to verify if a point is consistent with this model
            case (EstimationMethod::Affine):
                avg_num_models = 1; time_for_model_est = 50;
                sample_size = 3; est_error = ErrorMetric ::FORW_REPR_ERR; break;
            case (EstimationMethod::Homography):
                avg_num_models = 1; time_for_model_est = 150;
                sample_size = 4; est_error = ErrorMetric ::FORW_REPR_ERR; break;
            case (EstimationMethod::Fundamental):
                avg_num_models = 2.38; time_for_model_est = 180; maximum_thr = 2.5;
                sample_size = 7; est_error = ErrorMetric ::SAMPSON_ERR; break;
            case (EstimationMethod::Fundamental8):
                avg_num_models = 1; time_for_model_est = 100; maximum_thr = 2.5;
                sample_size = 8; est_error = ErrorMetric ::SAMPSON_ERR; break;
            case (EstimationMethod::Essential):
                avg_num_models = 3.93; time_for_model_est = 1000; maximum_thr = 2.5;
                sample_size = 5; est_error = ErrorMetric ::SGD_ERR; break;
            case (EstimationMethod::P3P):
                avg_num_models = 1.38; time_for_model_est = 800;
                sample_size = 3; est_error = ErrorMetric ::RERPOJ; break;
            case (EstimationMethod::P6P):
                avg_num_models = 1; time_for_model_est = 300;
                sample_size = 6; est_error = ErrorMetric ::RERPOJ; break;
            default: CV_Error(cv::Error::StsNotImplemented, "Estimator has not implemented yet!");
        }

        if (estimator_ == EstimationMethod::P3P || estimator_ == EstimationMethod::P6P) {
            neighborsType = NeighborSearchMethod::NEIGH_FLANN_KNN;
            k_nearest_neighbors = 2;
        }
        if (estimator == EstimationMethod::Fundamental || estimator == EstimationMethod::Essential) {
            lo_sample_size = 21;
            lo_thr_multiplier = 10;
        }
        if (estimator == EstimationMethod::Homography)
            maximum_thr = 8.;
        threshold = threshold_;
    }
    void setVerifier (VerificationMethod verifier_) override { verifier = verifier_; }
    void setPolisher (PolishingMethod polisher_) override { polisher = polisher_; }
    void setParallel (bool is_parallel_) override { is_parallel = is_parallel_; }
    void setError (ErrorMetric error_) override { est_error = error_; }
    void setLocalOptimization (LocalOptimMethod lo_) override { lo = lo_; }
    void setKNearestNeighhbors (int knn_) override { k_nearest_neighbors = knn_; }
    void setNeighborsType (NeighborSearchMethod neighbors) override { neighborsType = neighbors; }
    void setCellSize (int cell_size_) override { cell_size = cell_size_; }
    void setLOIterations (int iters) override { lo_inner_iterations = iters; }
    void setLOIterativeIters (int iters) override {lo_iterative_iterations = iters; }
    void setLOSampleSize (int lo_sample_size_) override { lo_sample_size = lo_sample_size_; }
    void setThresholdMultiplierLO (double thr_mult) override { lo_thr_multiplier = (int) round(thr_mult); }
    void maskRequired (bool need_mask_) override { need_mask = need_mask_; }
    void setRandomGeneratorState (int state) override { random_generator_state = state; }
    bool isMaskRequired () const override { return need_mask; }
    NeighborSearchMethod getNeighborsSearch () const override { return neighborsType; }
    int getKNN () const override { return k_nearest_neighbors; }
    ErrorMetric getError () const override { return est_error; }
    EstimationMethod getEstimator () const override { return estimator; }
    int getSampleSize () const override { return sample_size; }
    int getFinalLSQIterations () const override { return final_lsq_iters; }
    int getDegreesOfFreedom () const override { return DoF; }
    double getSigmaQuantile () const override { return sigma_quantile; }
    double getUpperIncompleteOfSigmaQuantile () const override {
        return upper_incomplete_of_sigma_quantile;
    }
    double getLowerIncompleteOfSigmaQuantile () const override {
        return lower_incomplete_of_sigma_quantile;
    }
    double getC () const override { return C; }
    double getMaximumThreshold () const override { return maximum_thr; }
    double getGraphCutSpatialCoherenceTerm () const override { return spatial_coherence_term; }
    int getLOSampleSize () const override { return lo_sample_size; }
    int getMaxNumHypothesisToTestBeforeRejection() const override {
        return max_hypothesis_test_before_verification;
    }
    PolishingMethod getFinalPolisher () const override { return polisher; }
    int getLOThresholdMultiplier() const override { return lo_thr_multiplier; }
    int getLOIterativeSampleSize() const override { return lo_iter_sample_size; }
    int getLOIterativeMaxIters() const override { return lo_iterative_iterations; }
    int getLOInnerMaxIters() const override { return lo_inner_iterations; }
    LocalOptimMethod getLO () const override { return lo; }
    ScoreMethod getScore () const override { return score; }
    int getMaxIters () const override { return max_iterations; }
    double getConfidence () const override { return confidence; }
    double getThreshold () const override { return threshold; }
    VerificationMethod getVerifier () const override { return verifier; }
    SamplingMethod getSampler () const override { return sampler; }
    int getRandomGeneratorState () const override { return random_generator_state; }
    int getMaxItersBeforeLO () const override { return max_iters_before_LO; }
    double getSPRTdelta () const override { return sprt_delta; }
    double getSPRTepsilon () const override { return sprt_eps; }
    double getSPRTavgNumModels () const override { return avg_num_models; }
    int getCellSize () const override { return cell_size; }
    int getGraphRadius() const override { return radius; }
    double getTimeForModelEstimation () const override { return time_for_model_est; }
    double getRelaxCoef () const override { return relax_coef; }
    const std::vector<int> &getGridCellNumber () const override { return grid_cell_number; }
    bool isParallel () const override { return is_parallel; }
    bool isFundamental () const override {
        return estimator == EstimationMethod ::Fundamental ||
               estimator == EstimationMethod ::Fundamental8;
    }
    bool isHomography () const override { return estimator == EstimationMethod ::Homography; }
    bool isEssential () const override { return estimator == EstimationMethod ::Essential; }
    bool isPnP() const override {
        return estimator == EstimationMethod ::P3P || estimator == EstimationMethod ::P6P;
    }
};

Ptr<Model> Model::create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_,
                         double confidence_, int max_iterations_, ScoreMethod score_) {
    return makePtr<ModelImpl>(threshold_, estimator_, sampler_, confidence_,
                              max_iterations_, score_);
}

bool run (const Ptr<const Model> &params, InputArray points1, InputArray points2, int state,
       Ptr<RansacOutput> &ransac_output, InputArray K1_, InputArray K2_,
       InputArray dist_coeff1, InputArray dist_coeff2) {
    Ptr<Error> error;
    Ptr<Estimator> estimator;
    Ptr<NeighborhoodGraph> graph;
    Ptr<Degeneracy> degeneracy;
    Ptr<Quality> quality;
    Ptr<ModelVerifier> verifier;
    Ptr<Sampler> sampler;
    Ptr<RandomGenerator> lo_sampler;
    Ptr<TerminationCriteria> termination;
    Ptr<LocalOptimization> lo;
    Ptr<FinalModelPolisher> polisher;
    Ptr<MinimalSolver> min_solver;
    Ptr<NonMinimalSolver> non_min_solver;

    Mat points, K1, K2, calib_points, undist_points1, undist_points2;
    int points_size;
    double threshold = params->getThreshold(), max_thr = params->getMaximumThreshold();
    const int min_sample_size = params->getSampleSize();
    if (params->isPnP()) {
        if (! K1_.empty()) {
            K1 = K1_.getMat(); K1.convertTo(K1, CV_64F);
            if (! dist_coeff1.empty()) {
                // undistortPoints also calibrate points using K
                if (points1.isContinuous())
                     undistortPoints(points1, undist_points1, K1_, dist_coeff1);
                else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1);
                points_size = mergePoints(undist_points1, points2, points, true);
                Utils::normalizeAndDecalibPointsPnP (K1, points, calib_points);
            } else {
                points_size = mergePoints(points1, points2, points, true);
                Utils::calibrateAndNormalizePointsPnP(K1, points, calib_points);
            }
        } else
            points_size = mergePoints(points1, points2, points, true);
    } else {
        if (params->isEssential()) {
            CV_CheckEQ((int)(!K1_.empty() && !K2_.empty()), 1, "Intrinsic matrix must not be empty!");
            K1 = K1_.getMat(); K1.convertTo(K1, CV_64F);
            K2 = K2_.getMat(); K2.convertTo(K2, CV_64F);
            if (! dist_coeff1.empty() || ! dist_coeff2.empty()) {
                // undistortPoints also calibrate points using K
                if (points1.isContinuous())
                     undistortPoints(points1, undist_points1, K1_, dist_coeff1);
                else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1);
                if (points2.isContinuous())
                     undistortPoints(points2, undist_points2, K2_, dist_coeff2);
                else undistortPoints(points2.getMat().clone(), undist_points2, K2_, dist_coeff2);
                points_size = mergePoints(undist_points1, undist_points2, calib_points, false);
            } else {
                points_size = mergePoints(points1, points2, points, false);
                Utils::calibratePoints(K1, K2, points, calib_points);
            }
            threshold = Utils::getCalibratedThreshold(threshold, K1, K2);
            max_thr = Utils::getCalibratedThreshold(max_thr, K1, K2);
        } else
            points_size = mergePoints(points1, points2, points, false);
    }

    // Since error function output squared error distance, so make
    // threshold squared as well
    threshold *= threshold;

    if (params->getSampler() == SamplingMethod::SAMPLING_NAPSAC || params->getLO() == LocalOptimMethod::LOCAL_OPTIM_GC) {
        if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_GRID) {
            graph = GridNeighborhoodGraph::create(points, points_size,
                params->getCellSize(), params->getCellSize(),
                params->getCellSize(), params->getCellSize(), 10);
        } else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_KNN) {
            graph = FlannNeighborhoodGraph::create(points, points_size,params->getKNN(), false, 5, 1);
        } else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_RADIUS) {
            graph = RadiusSearchNeighborhoodGraph::create(points, points_size,
                    params->getGraphRadius(), 5, 1);
        } else CV_Error(cv::Error::StsNotImplemented, "Graph type is not implemented!");
    }

    std::vector<Ptr<NeighborhoodGraph>> layers;
    if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) {
        CV_CheckEQ((int)params->isPnP(), 0, "ProgressiveNAPSAC for PnP is not implemented!");
        const auto &cell_number_per_layer = params->getGridCellNumber();
        layers.reserve(cell_number_per_layer.size());
        const auto * const pts = (float *) points.data;
        float img1_width = 0, img1_height = 0, img2_width = 0, img2_height = 0;
        for (int i = 0; i < 4 * points_size; i += 4) {
            if (pts[i    ] > img1_width ) img1_width  = pts[i    ];
            if (pts[i + 1] > img1_height) img1_height = pts[i + 1];
            if (pts[i + 2] > img2_width ) img2_width  = pts[i + 2];
            if (pts[i + 3] > img2_height) img2_height = pts[i + 3];
        }
        // Create grid graphs (overlapping layes of given cell numbers)
        for (int layer_idx = 0; layer_idx < (int)cell_number_per_layer.size(); layer_idx++) {
            const int cell_number = cell_number_per_layer[layer_idx];
            if (layer_idx > 0)
                if (cell_number_per_layer[layer_idx-1] <= cell_number)
                    CV_Error(cv::Error::StsError, "Progressive NAPSAC sampler: "
                        "Cell number in layers must be in decreasing order!");
            layers.emplace_back(GridNeighborhoodGraph::create(points, points_size,
          (int)(img1_width / (float)cell_number), (int)(img1_height / (float)cell_number),
          (int)(img2_width / (float)cell_number), (int)(img2_height / (float)cell_number), 10));
        }
    }

    // update points by calibrated for Essential matrix after graph is calculated
    if (params->isEssential()) {
        points = calib_points;
        // if maximum calibrated threshold significanlty differs threshold then set upper bound
        if (max_thr > 10*threshold)
            max_thr = sqrt(10*threshold); // max thr will be squared after
    }
    if (max_thr < threshold)
        max_thr = threshold;

    switch (params->getError()) {
        case ErrorMetric::SYMM_REPR_ERR:
            error = ReprojectionErrorSymmetric::create(points); break;
        case ErrorMetric::FORW_REPR_ERR:
            if (params->getEstimator() == EstimationMethod::Affine)
                error = ReprojectionErrorAffine::create(points);
            else error = ReprojectionErrorForward::create(points);
            break;
        case ErrorMetric::SAMPSON_ERR:
            error = SampsonError::create(points); break;
        case ErrorMetric::SGD_ERR:
            error = SymmetricGeometricDistance::create(points); break;
        case ErrorMetric::RERPOJ:
            error = ReprojectionErrorPmatrix::create(points); break;
        default: CV_Error(cv::Error::StsNotImplemented , "Error metric is not implemented!");
    }

    switch (params->getScore()) {
        case ScoreMethod::SCORE_METHOD_RANSAC :
            quality = RansacQuality::create(points_size, threshold, error); break;
        case ScoreMethod::SCORE_METHOD_MSAC :
            quality = MsacQuality::create(points_size, threshold, error); break;
        case ScoreMethod::SCORE_METHOD_MAGSAC :
            quality = MagsacQuality::create(max_thr, points_size, error,
                threshold, params->getDegreesOfFreedom(),  params->getSigmaQuantile(),
                params->getUpperIncompleteOfSigmaQuantile(),
                params->getLowerIncompleteOfSigmaQuantile(), params->getC()); break;
        case ScoreMethod::SCORE_METHOD_LMEDS :
            quality = LMedsQuality::create(points_size, threshold, error); break;
        default: CV_Error(cv::Error::StsNotImplemented, "Score is not imeplemeted!");
    }

    if (params->isHomography()) {
        degeneracy = HomographyDegeneracy::create(points);
        min_solver = HomographyMinimalSolver4ptsGEM::create(points);
        non_min_solver = HomographyNonMinimalSolver::create(points);
        estimator = HomographyEstimator::create(min_solver, non_min_solver, degeneracy);
    } else if (params->isFundamental()) {
        degeneracy = FundamentalDegeneracy::create(state++, quality, points, min_sample_size, 5. /*sqr homogr thr*/);
        if(min_sample_size == 7) min_solver = FundamentalMinimalSolver7pts::create(points);
        else min_solver = FundamentalMinimalSolver8pts::create(points);
        non_min_solver = FundamentalNonMinimalSolver::create(points);
        estimator = FundamentalEstimator::create(min_solver, non_min_solver, degeneracy);
    } else if (params->isEssential()) {
        degeneracy = EssentialDegeneracy::create(points, min_sample_size);
        min_solver = EssentialMinimalSolverStewenius5pts::create(points);
        non_min_solver = EssentialNonMinimalSolver::create(points);
        estimator = EssentialEstimator::create(min_solver, non_min_solver, degeneracy);
    } else if (params->isPnP()) {
        degeneracy = makePtr<Degeneracy>();
        if (min_sample_size == 3) {
            non_min_solver = DLSPnP::create(points, calib_points, K1);
            min_solver = P3PSolver::create(points, calib_points, K1);
        } else {
            min_solver = PnPMinimalSolver6Pts::create(points);
            non_min_solver = PnPNonMinimalSolver::create(points);
        }
        estimator = PnPEstimator::create(min_solver, non_min_solver);
    } else if (params->getEstimator() == EstimationMethod::Affine) {
        degeneracy = makePtr<Degeneracy>();
        min_solver = AffineMinimalSolver::create(points);
        non_min_solver = AffineNonMinimalSolver::create(points);
        estimator = AffineEstimator::create(min_solver, non_min_solver);
    } else CV_Error(cv::Error::StsNotImplemented, "Estimator not implemented!");

    switch (params->getSampler()) {
        case SamplingMethod::SAMPLING_UNIFORM:
            sampler = UniformSampler::create(state++, min_sample_size, points_size); break;
        case SamplingMethod::SAMPLING_PROSAC:
            sampler = ProsacSampler::create(state++, points_size, min_sample_size, 200000); break;
        case SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC:
            sampler = ProgressiveNapsac::create(state++, points_size, min_sample_size, layers, 20); break;
        case SamplingMethod::SAMPLING_NAPSAC:
            sampler = NapsacSampler::create(state++, points_size, min_sample_size, graph); break;
        default: CV_Error(cv::Error::StsNotImplemented, "Sampler is not implemented!");
    }

    switch (params->getVerifier()) {
        case VerificationMethod::NullVerifier: verifier = ModelVerifier::create(); break;
        case VerificationMethod::SprtVerifier:
            verifier = SPRT::create(state++, error, points_size, params->getScore() == ScoreMethod ::SCORE_METHOD_MAGSAC ? max_thr : threshold,
             params->getSPRTepsilon(), params->getSPRTdelta(), params->getTimeForModelEstimation(),
             params->getSPRTavgNumModels(), params->getScore()); break;
        default: CV_Error(cv::Error::StsNotImplemented, "Verifier is not imeplemented!");
    }

    if (params->getSampler() == SamplingMethod::SAMPLING_PROSAC) {
        termination = ProsacTerminationCriteria::create(sampler.dynamicCast<ProsacSampler>(), error,
                points_size, min_sample_size, params->getConfidence(),
                params->getMaxIters(), 100, 0.05, 0.05, threshold);
    } else if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) {
        if (params->getVerifier() == VerificationMethod::SprtVerifier)
            termination = SPRTPNapsacTermination::create(((SPRT *)verifier.get())->getSPRTvector(),
                    params->getConfidence(), points_size, min_sample_size,
                    params->getMaxIters(), params->getRelaxCoef());
        else
            termination = StandardTerminationCriteria::create (params->getConfidence(),
                    points_size, min_sample_size, params->getMaxIters());
    } else if (params->getVerifier() == VerificationMethod::SprtVerifier) {
        termination = SPRTTermination::create(((SPRT *) verifier.get())->getSPRTvector(),
             params->getConfidence(), points_size, min_sample_size, params->getMaxIters());
    } else
        termination = StandardTerminationCriteria::create
            (params->getConfidence(), points_size, min_sample_size, params->getMaxIters());

    if (params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL) {
        lo_sampler = UniformRandomGenerator::create(state++, points_size, params->getLOSampleSize());
        switch (params->getLO()) {
            case LocalOptimMethod::LOCAL_OPTIM_INNER_LO:
                lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler,
                     points_size, threshold, false, params->getLOIterativeSampleSize(),
                     params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(),
                     params->getLOThresholdMultiplier()); break;
            case LocalOptimMethod::LOCAL_OPTIM_INNER_AND_ITER_LO:
                lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler,
                     points_size, threshold, true, params->getLOIterativeSampleSize(),
                     params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(),
                     params->getLOThresholdMultiplier()); break;
            case LocalOptimMethod::LOCAL_OPTIM_GC:
                lo = GraphCut::create(estimator, error, quality, graph, lo_sampler, threshold,
                   params->getGraphCutSpatialCoherenceTerm(), params->getLOInnerMaxIters()); break;
            case LocalOptimMethod::LOCAL_OPTIM_SIGMA:
                lo = SigmaConsensus::create(estimator, error, quality, verifier,
                     params->getLOSampleSize(), params->getLOInnerMaxIters(),
                     params->getDegreesOfFreedom(), params->getSigmaQuantile(),
                     params->getUpperIncompleteOfSigmaQuantile(), params->getC(), max_thr); break;
            default: CV_Error(cv::Error::StsNotImplemented , "Local Optimization is not implemented!");
        }
    }

    if (params->getFinalPolisher() == PolishingMethod::LSQPolisher)
        polisher = LeastSquaresPolishing::create(estimator, quality, params->getFinalLSQIterations());

    Ransac ransac (params, points_size, estimator, quality, sampler,
          termination, verifier, degeneracy, lo, polisher, params->isParallel(), state);
    if (ransac.run(ransac_output)) {
        if (params->isPnP()) {
            // convert R to rodrigues and back and recalculate inliers which due to numerical
            // issues can differ
            Mat out, R, newR, newP, t, rvec;
            if (K1.empty()) {
                usac::Utils::decomposeProjection (ransac_output->getModel(), K1, R, t);
                Rodrigues(R, rvec);
                hconcat(rvec, t, out);
                hconcat(out, K1, out);
            } else {
                const Mat Rt = K1.inv() * ransac_output->getModel();
                t = Rt.col(3);
                Rodrigues(Rt.colRange(0,3), rvec);
                hconcat(rvec, t, out);
            }
            Rodrigues(rvec, newR);
            hconcat(K1 * newR, K1 * t, newP);
            std::vector<bool> inliers_mask(points_size);
            quality->getInliers(newP, inliers_mask);
            ransac_output = RansacOutput::create(out, inliers_mask, 0,0,0,0,0,0);
        }
        return true;
    }
    return false;
}
}}