utils.cpp
22 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#include "opencv2/flann/miniflann.hpp"
#include <map>
namespace cv { namespace usac {
double Utils::getCalibratedThreshold (double threshold, const Mat &K1, const Mat &K2) {
return threshold / ((K1.at<double>(0, 0) + K1.at<double>(1, 1) +
K2.at<double>(0, 0) + K2.at<double>(1, 1)) / 4.0);
}
/*
* K1, K2 are 3x3 intrinsics matrices
* points is matrix of size |N| x 4
* Assume K = [k11 k12 k13
* 0 k22 k23
* 0 0 1]
*/
void Utils::calibratePoints (const Mat &K1, const Mat &K2, const Mat &points, Mat &calib_points) {
const auto * const points_ = (float *) points.data;
const auto * const k1 = (double *) K1.data;
const auto inv1_k11 = float(1 / k1[0]); // 1 / k11
const auto inv1_k12 = float(-k1[1] / (k1[0]*k1[4])); // -k12 / (k11*k22)
// (-k13*k22 + k12*k23) / (k11*k22)
const auto inv1_k13 = float((-k1[2]*k1[4] + k1[1]*k1[5]) / (k1[0]*k1[4]));
const auto inv1_k22 = float(1 / k1[4]); // 1 / k22
const auto inv1_k23 = float(-k1[5] / k1[4]); // -k23 / k22
const auto * const k2 = (double *) K2.data;
const auto inv2_k11 = float(1 / k2[0]);
const auto inv2_k12 = float(-k2[1] / (k2[0]*k2[4]));
const auto inv2_k13 = float((-k2[2]*k2[4] + k2[1]*k2[5]) / (k2[0]*k2[4]));
const auto inv2_k22 = float(1 / k2[4]);
const auto inv2_k23 = float(-k2[5] / k2[4]);
calib_points = Mat ( points.rows, 4, points.type());
auto * calib_points_ = (float *) calib_points.data;
for (int i = 0; i < points.rows; i++) {
const int idx = 4*i;
(*calib_points_++) = inv1_k11 * points_[idx ] + inv1_k12 * points_[idx+1] + inv1_k13;
(*calib_points_++) = inv1_k22 * points_[idx+1] + inv1_k23;
(*calib_points_++) = inv2_k11 * points_[idx+2] + inv2_k12 * points_[idx+3] + inv2_k13;
(*calib_points_++) = inv2_k22 * points_[idx+3] + inv2_k23;
}
}
/*
* K is 3x3 intrinsic matrix
* points is matrix of size |N| x 5, first two columns are image points [u_i, v_i]
* calib_norm_pts are K^-1 [u v 1]^T / ||K^-1 [u v 1]^T||
*/
void Utils::calibrateAndNormalizePointsPnP (const Mat &K, const Mat &pts, Mat &calib_norm_pts) {
const auto * const points = (float *) pts.data;
const auto * const k = (double *) K.data;
const auto inv_k11 = float(1 / k[0]);
const auto inv_k12 = float(-k[1] / (k[0]*k[4]));
const auto inv_k13 = float((-k[2]*k[4] + k[1]*k[5]) / (k[0]*k[4]));
const auto inv_k22 = float(1 / k[4]);
const auto inv_k23 = float(-k[5] / k[4]);
calib_norm_pts = Mat (pts.rows, 3, pts.type());
auto * calib_norm_pts_ = (float *) calib_norm_pts.data;
for (int i = 0; i < pts.rows; i++) {
const int idx = 5 * i;
const float k_inv_u = inv_k11 * points[idx] + inv_k12 * points[idx+1] + inv_k13;
const float k_inv_v = inv_k22 * points[idx+1] + inv_k23;
const float norm = 1.f / sqrtf(k_inv_u*k_inv_u + k_inv_v*k_inv_v + 1);
(*calib_norm_pts_++) = k_inv_u * norm;
(*calib_norm_pts_++) = k_inv_v * norm;
(*calib_norm_pts_++) = norm;
}
}
void Utils::normalizeAndDecalibPointsPnP (const Mat &K_, Mat &pts, Mat &calib_norm_pts) {
const auto * const K = (double *) K_.data;
const auto k11 = (float)K[0], k12 = (float)K[1], k13 = (float)K[2],
k22 = (float)K[4], k23 = (float)K[5];
calib_norm_pts = Mat (pts.rows, 3, pts.type());
auto * points = (float *) pts.data;
auto * calib_norm_pts_ = (float *) calib_norm_pts.data;
for (int i = 0; i < pts.rows; i++) {
const int idx = 5 * i;
const float k_inv_u = points[idx ];
const float k_inv_v = points[idx+1];
const float norm = 1.f / sqrtf(k_inv_u*k_inv_u + k_inv_v*k_inv_v + 1);
(*calib_norm_pts_++) = k_inv_u * norm;
(*calib_norm_pts_++) = k_inv_v * norm;
(*calib_norm_pts_++) = norm;
points[idx ] = k11 * k_inv_u + k12 * k_inv_v + k13;
points[idx+1] = k22 * k_inv_v + k23;
}
}
/*
* decompose Projection Matrix to calibration, rotation and translation
* Assume K = [fx 0 tx
* 0 fy ty
* 0 0 1]
*/
void Utils::decomposeProjection (const Mat &P, Mat &K_, Mat &R, Mat &t, bool same_focal) {
const Mat M = P.colRange(0,3);
double scale = norm(M.row(2)); scale *= scale;
Matx33d K = Matx33d::eye();
K(1,2) = M.row(1).dot(M.row(2)) / scale;
K(0,2) = M.row(0).dot(M.row(2)) / scale;
K(1,1) = sqrt(M.row(1).dot(M.row(1)) / scale - K(1,2)*K(1,2));
K(0,0) = sqrt(M.row(0).dot(M.row(0)) / scale - K(0,2)*K(0,2));
if (same_focal)
K(0,0) = K(1,1) = (K(0,0) + K(1,1)) / 2;
R = K.inv() * M / sqrt(scale);
if (determinant(M) < 0) R *= -1;
t = R * M.inv() * P.col(3);
K_ = Mat(K);
}
Matx33d Math::getSkewSymmetric(const Vec3d &v) {
return Matx33d(0, -v[2], v[1],
v[2], 0, -v[0],
-v[1], v[0], 0);
}
Matx33d Math::rotVec2RotMat (const Vec3d &v) {
const double phi = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
const double x = v[0] / phi, y = v[1] / phi, z = v[2] / phi;
const double a = sin(phi), b = cos(phi);
// R = I + sin(phi) * skew(v) + (1 - cos(phi) * skew(v)^2
return Matx33d((b - 1)*y*y + (b - 1)*z*z + 1, -a*z - x*y*(b - 1), a*y - x*z*(b - 1),
a*z - x*y*(b - 1), (b - 1)*x*x + (b - 1)*z*z + 1, -a*x - y*z*(b - 1),
-a*y - x*z*(b - 1), a*x - y*z*(b - 1), (b - 1)*x*x + (b - 1)*y*y + 1);
}
Vec3d Math::rotMat2RotVec (const Matx33d &R) {
// https://math.stackexchange.com/questions/83874/efficient-and-accurate-numerical-implementation-of-the-inverse-rodrigues-rotatio?rq=1
Vec3d rot_vec;
const double trace = R(0,0)+R(1,1)+R(2,2);
if (trace >= 3 - FLT_EPSILON) {
rot_vec = (0.5 * (trace-3)/12)*Vec3d(R(2,1)-R(1,2),
R(0,2)-R(2,0),
R(1,0)-R(0,1));
} else if (3 - FLT_EPSILON > trace && trace > -1 + FLT_EPSILON) {
double theta = acos((trace - 1) / 2);
rot_vec = (theta / (2 * sin(theta))) * Vec3d(R(2,1)-R(1,2),
R(0,2)-R(2,0),
R(1,0)-R(0,1));
} else {
int a;
if (R(0,0) > R(1,1))
a = R(0,0) > R(2,2) ? 0 : 2;
else
a = R(1,1) > R(2,2) ? 1 : 2;
Vec3d v;
int b = (a + 1) % 3, c = (a + 2) % 3;
double s = sqrt(R(a,a) - R(b,b) - R(c,c) + 1);
v[a] = s / 2;
v[b] = (R(b,a) + R(a,b)) / (2 * s);
v[c] = (R(c,a) + R(a,c)) / (2 * s);
rot_vec = M_PI * v / norm(v);
}
return rot_vec;
}
/*
* Eliminate matrix of m rows and n columns to be upper triangular.
*/
bool Math::eliminateUpperTriangular (std::vector<double> &a, int m, int n) {
for (int r = 0; r < m; r++){
double pivot = a[r*n+r];
int row_with_pivot = r;
// find the maximum pivot value among r-th column
for (int k = r+1; k < m; k++)
if (fabs(pivot) < fabs(a[k*n+r])) {
pivot = a[k*n+r];
row_with_pivot = k;
}
// if pivot value is 0 continue
if (fabs(pivot) < DBL_EPSILON)
return false; // matrix is not full rank -> terminate
// swap row with maximum pivot value with current row
for (int c = r; c < n; c++)
std::swap(a[row_with_pivot*n+c], a[r*n+c]);
// eliminate other rows
for (int j = r+1; j < m; j++){
const int row_idx1 = j*n, row_idx2 = r*n;
const auto fac = a[row_idx1+r] / pivot;
a[row_idx1+r] = 0; // zero eliminated element
for (int c = r+1; c < n; c++)
a[row_idx1+c] -= fac * a[row_idx2+c];
}
}
return true;
}
//////////////////////////////////////// RANDOM GENERATOR /////////////////////////////
class UniformRandomGeneratorImpl : public UniformRandomGenerator {
private:
int subset_size = 0, max_range = 0;
std::vector<int> subset;
RNG rng;
public:
explicit UniformRandomGeneratorImpl (int state) : rng(state) {}
// interval is <0; max_range);
UniformRandomGeneratorImpl (int state, int max_range_, int subset_size_) : rng(state) {
subset_size = subset_size_;
max_range = max_range_;
subset = std::vector<int>(subset_size_);
}
int getRandomNumber () override {
return rng.uniform(0, max_range);
}
int getRandomNumber (int max_rng) override {
return rng.uniform(0, max_rng);
}
// closed range
void resetGenerator (int max_range_) override {
CV_CheckGE(0, max_range_, "max range must be greater than 0");
max_range = max_range_;
}
void generateUniqueRandomSet (std::vector<int>& sample) override {
CV_CheckLE(subset_size, max_range, "RandomGenerator. Subset size must be LE than range!");
int j, num;
sample[0] = rng.uniform(0, max_range);
for (int i = 1; i < subset_size;) {
num = rng.uniform(0, max_range);
// check if value is in array
for (j = i - 1; j >= 0; j--)
if (num == sample[j])
// if so, generate again
break;
// success, value is not in array, so it is unique, add to sample.
if (j == -1) sample[i++] = num;
}
}
// interval is <0; max_range)
void generateUniqueRandomSet (std::vector<int>& sample, int max_range_) override {
/*
* necessary condition:
* if subset size is bigger than range then array cannot be unique,
* so function has infinite loop.
*/
CV_CheckLE(subset_size, max_range_, "RandomGenerator. Subset size must be LE than range!");
int num, j;
sample[0] = rng.uniform(0, max_range_);
for (int i = 1; i < subset_size;) {
num = rng.uniform(0, max_range_);
for (j = i - 1; j >= 0; j--)
if (num == sample[j])
break;
if (j == -1) sample[i++] = num;
}
}
// interval is <0, max_range)
void generateUniqueRandomSet (std::vector<int>& sample, int subset_size_, int max_range_) override {
CV_CheckLE(subset_size_, max_range_, "RandomGenerator. Subset size must be LE than range!");
int num, j;
sample[0] = rng.uniform(0, max_range_);
for (int i = 1; i < subset_size_;) {
num = rng.uniform(0, max_range_);
for (j = i - 1; j >= 0; j--)
if (num == sample[j])
break;
if (j == -1) sample[i++] = num;
}
}
const std::vector<int> &generateUniqueRandomSubset (std::vector<int> &array1, int size1) override {
CV_CheckLE(subset_size, size1, "RandomGenerator. Subset size must be LE than range!");
int temp_size1 = size1;
for (int i = 0; i < subset_size; i++) {
const int idx1 = rng.uniform(0, temp_size1);
subset[i] = array1[idx1];
std::swap(array1[idx1], array1[--temp_size1]);
}
return subset;
}
void setSubsetSize (int subset_size_) override {
subset_size = subset_size_;
}
int getSubsetSize () const override { return subset_size; }
Ptr<RandomGenerator> clone (int state) const override {
return makePtr<UniformRandomGeneratorImpl>(state, max_range, subset_size);
}
};
Ptr<UniformRandomGenerator> UniformRandomGenerator::create (int state) {
return makePtr<UniformRandomGeneratorImpl>(state);
}
Ptr<UniformRandomGenerator> UniformRandomGenerator::create
(int state, int max_range, int subset_size_) {
return makePtr<UniformRandomGeneratorImpl>(state, max_range, subset_size_);
}
// @k_minth - desired k-th minimal element. For median is half of array
// closed working interval of array <@left; @right>
float quicksort_median (std::vector<float> &array, int k_minth, int left, int right);
float quicksort_median (std::vector<float> &array, int k_minth, int left, int right) {
// length is 0, return single value
if (right - left == 0) return array[left];
// get pivot, the rightest value in array
const auto pivot = array[right];
int right_ = right - 1; // -1, not including pivot
// counter of values smaller equal than pivot
int j = left, values_less_eq_pivot = 1; // 1, inludes pivot already
for (; j <= right_;) {
if (array[j] <= pivot) {
j++;
values_less_eq_pivot++;
} else
// value is bigger than pivot, swap with right_ value
// swap values in array and decrease interval
std::swap(array[j], array[right_--]);
}
if (values_less_eq_pivot == k_minth) return pivot;
if (k_minth > values_less_eq_pivot)
return quicksort_median(array, k_minth - values_less_eq_pivot, j, right-1);
else
return quicksort_median(array, k_minth, left, j-1);
}
// find median using quicksort with complexity O(log n)
// Note, function changes order of values in array
float Utils::findMedian (std::vector<float> &array) {
const int length = static_cast<int>(array.size());
if (length % 2) {
// odd number of values
return quicksort_median (array, length/2+1, 0, length-1);
} else {
// even: return average
return (quicksort_median(array, length/2 , 0, length-1) +
quicksort_median(array, length/2+1, 0, length-1))/2;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////// Radius Search Graph /////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
class RadiusSearchNeighborhoodGraphImpl : public RadiusSearchNeighborhoodGraph {
private:
std::vector<std::vector<int>> graph;
public:
RadiusSearchNeighborhoodGraphImpl (const Mat &container_, int points_size,
double radius, int flann_search_params, int num_kd_trees) {
// Radius search OpenCV works only with float data
CV_Assert(container_.type() == CV_32F);
FlannBasedMatcher flann(makePtr<flann::KDTreeIndexParams>(num_kd_trees), makePtr<flann::SearchParams>(flann_search_params));
std::vector<std::vector<DMatch>> neighbours;
flann.radiusMatch(container_, container_, neighbours, (float)radius);
// allocate graph
graph = std::vector<std::vector<int>> (points_size);
int pt = 0;
for (const auto &n : neighbours) {
auto &graph_row = graph[pt];
graph_row = std::vector<int>(n.size()-1);
int j = 0;
for (const auto &idx : n)
// skip neighbor which has the same index as requested point
if (idx.trainIdx != pt)
graph_row[j++] = idx.trainIdx;
pt++;
}
}
inline const std::vector<int> &getNeighbors(int point_idx) const override {
return graph[point_idx];
}
};
Ptr<RadiusSearchNeighborhoodGraph> RadiusSearchNeighborhoodGraph::create (const Mat &points,
int points_size, double radius_, int flann_search_params, int num_kd_trees) {
return makePtr<RadiusSearchNeighborhoodGraphImpl> (points, points_size, radius_,
flann_search_params, num_kd_trees);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////// FLANN Graph /////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
class FlannNeighborhoodGraphImpl : public FlannNeighborhoodGraph {
private:
std::vector<std::vector<int>> graph;
std::vector<std::vector<double>> distances;
public:
FlannNeighborhoodGraphImpl (const Mat &container_, int points_size, int k_nearest_neighbors,
bool get_distances, int flann_search_params_, int num_kd_trees) {
CV_Assert(k_nearest_neighbors <= points_size);
// FLANN works only with float data
CV_Assert(container_.type() == CV_32F);
flann::Index flannIndex (container_.reshape(1), flann::KDTreeIndexParams(num_kd_trees));
Mat dists, nearest_neighbors;
flannIndex.knnSearch(container_, nearest_neighbors, dists, k_nearest_neighbors+1,
flann::SearchParams(flann_search_params_));
// first nearest neighbor of point is this point itself.
// remove this first column
nearest_neighbors.colRange(1, k_nearest_neighbors+1).copyTo (nearest_neighbors);
graph = std::vector<std::vector<int>>(points_size, std::vector<int>(k_nearest_neighbors));
const auto * const nn = (int *) nearest_neighbors.data;
const auto * const dists_ptr = (float *) dists.data;
if (get_distances)
distances = std::vector<std::vector<double>>(points_size, std::vector<double>(k_nearest_neighbors));
for (int pt = 0; pt < points_size; pt++) {
std::copy(nn + k_nearest_neighbors*pt, nn + k_nearest_neighbors*pt + k_nearest_neighbors, &graph[pt][0]);
if (get_distances)
std::copy(dists_ptr + k_nearest_neighbors*pt, dists_ptr + k_nearest_neighbors*pt + k_nearest_neighbors,
&distances[pt][0]);
}
}
const std::vector<double>& getNeighborsDistances (int idx) const override {
return distances[idx];
}
inline const std::vector<int> &getNeighbors(int point_idx) const override {
// CV_Assert(point_idx_ < num_vertices);
return graph[point_idx];
}
};
Ptr<FlannNeighborhoodGraph> FlannNeighborhoodGraph::create(const Mat &points,
int points_size, int k_nearest_neighbors_, bool get_distances,
int flann_search_params_, int num_kd_trees) {
return makePtr<FlannNeighborhoodGraphImpl>(points, points_size,
k_nearest_neighbors_, get_distances, flann_search_params_, num_kd_trees);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////// Grid Neighborhood Graph /////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
class GridNeighborhoodGraphImpl : public GridNeighborhoodGraph {
private:
// This struct is used for the nearest neighbors search by griding two images.
struct CellCoord {
int c1x, c1y, c2x, c2y;
CellCoord (int c1x_, int c1y_, int c2x_, int c2y_) {
c1x = c1x_; c1y = c1y_; c2x = c2x_; c2y = c2y_;
}
bool operator==(const CellCoord &o) const {
return c1x == o.c1x && c1y == o.c1y && c2x == o.c2x && c2y == o.c2y;
}
bool operator<(const CellCoord &o) const {
if (c1x < o.c1x) return true;
if (c1x == o.c1x && c1y < o.c1y) return true;
if (c1x == o.c1x && c1y == o.c1y && c2x < o.c2x) return true;
return c1x == o.c1x && c1y == o.c1y && c2x == o.c2x && c2y < o.c2y;
}
};
std::map<CellCoord, std::vector<int >> neighbors_map;
std::vector<std::vector<int>> graph;
public:
GridNeighborhoodGraphImpl (const Mat &container_, int points_size,
int cell_size_x_img1, int cell_size_y_img1, int cell_size_x_img2, int cell_size_y_img2,
int max_neighbors) {
const auto * const container = (float *) container_.data;
// <int, int, int, int> -> {neighbors set}
// Key is cell position. The value is indexes of neighbors.
const float cell_sz_x1 = 1.f / (float) cell_size_x_img1,
cell_sz_y1 = 1.f / (float) cell_size_y_img1,
cell_sz_x2 = 1.f / (float) cell_size_x_img2,
cell_sz_y2 = 1.f / (float) cell_size_y_img2;
const int dimension = container_.cols;
for (int i = 0; i < points_size; i++) {
const int idx = dimension * i;
neighbors_map[CellCoord((int)(container[idx ] * cell_sz_x1),
(int)(container[idx+1] * cell_sz_y1),
(int)(container[idx+2] * cell_sz_x2),
(int)(container[idx+3] * cell_sz_y2))].emplace_back(i);
}
//--------- create a graph ----------
graph = std::vector<std::vector<int>>(points_size);
// store neighbors cells into graph (2D vector)
for (const auto &cell : neighbors_map) {
const int neighbors_in_cell = static_cast<int>(cell.second.size());
// only one point in cell -> no neighbors
if (neighbors_in_cell < 2) continue;
const std::vector<int> &neighbors = cell.second;
// ---------- fill graph -----
for (int v_in_cell : neighbors) {
// there is always at least one neighbor
auto &graph_row = graph[v_in_cell];
graph_row = std::vector<int>(std::min(max_neighbors, neighbors_in_cell-1));
int j = 0;
for (int n : neighbors)
if (n != v_in_cell){
graph_row[j++] = n;
if (j >= max_neighbors)
break;
}
}
}
}
inline const std::vector<int> &getNeighbors(int point_idx) const override {
// Note, neighbors vector also includes point_idx!
// return neighbors_map[vertices_to_cells[point_idx]];
return graph[point_idx];
}
};
Ptr<GridNeighborhoodGraph> GridNeighborhoodGraph::create(const Mat &points,
int points_size, int cell_size_x_img1_, int cell_size_y_img1_,
int cell_size_x_img2_, int cell_size_y_img2_, int max_neighbors) {
return makePtr<GridNeighborhoodGraphImpl>(points, points_size,
cell_size_x_img1_, cell_size_y_img1_, cell_size_x_img2_, cell_size_y_img2_, max_neighbors);
}
}}