functors.hpp
8.45 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP
#define OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP
#include <cuda_runtime.h>
#include "math.hpp"
#include "../cuda4dnn/csl/nvcc_defs.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
struct IdentityFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE IdentityFunctor() { }
CUDA4DNN_DEVICE IdentityFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
return value;
};
};
template <class T>
struct ReLUFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() : slope(0) { }
CUDA4DNN_HOST_DEVICE Params(T slope_) : slope(slope_) { }
T slope;
};
CUDA4DNN_DEVICE ReLUFunctor() : ReLUFunctor(Params{}) { }
CUDA4DNN_DEVICE ReLUFunctor(const Params& params) : slope(params.slope) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::log1pexp;
return value >= T(0) ? value : slope * value;
}
T slope;
};
template <class T>
struct ClippedReLUFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() : floor(0), ceiling(6) { }
CUDA4DNN_HOST_DEVICE Params(T floor_, T ceiling_) : floor(floor_), ceiling(ceiling_) { }
T floor, ceiling;
};
CUDA4DNN_DEVICE ClippedReLUFunctor() : ClippedReLUFunctor(Params{}) { }
CUDA4DNN_DEVICE ClippedReLUFunctor(const Params& params) : floor{params.floor}, ceiling{params.ceiling} { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::clamp;
return clamp(value, floor, ceiling);
}
T floor, ceiling;
};
template <class T>
struct TanHFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE TanHFunctor() { }
CUDA4DNN_DEVICE TanHFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::tanh;
return tanh(value);
}
};
template <class T>
struct SwishFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE SwishFunctor() { }
CUDA4DNN_DEVICE SwishFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
// f(x) = x * sigmoid(x)
using csl::device::fast_divide;
using csl::device::fast_exp;
return fast_divide(value, static_cast<T>(1) + fast_exp(-value));
}
};
template <class T>
struct MishFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE MishFunctor() { }
CUDA4DNN_DEVICE MishFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::tanh;
using csl::device::log1pexp;
return value * tanh(log1pexp(value));
}
};
template <>
struct MishFunctor<float> {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE MishFunctor() { }
CUDA4DNN_DEVICE MishFunctor(const Params& params) { }
CUDA4DNN_DEVICE float operator()(float value) {
// f(x) = x * tanh(log1pexp(x));
using csl::device::fast_divide;
using csl::device::fast_exp;
auto e = fast_exp(value);
auto n = e * e + 2 * e;
if (value <= -0.6f)
return value * fast_divide(n, n + 2);
return value - 2 * fast_divide(value, n + 2);
}
};
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template <>
struct MishFunctor<__half> {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE MishFunctor() { }
CUDA4DNN_DEVICE MishFunctor(const Params& params) { }
CUDA4DNN_DEVICE __half operator()(__half value) {
return MishFunctor<float>()(value);
}
};
#endif
template <class T>
struct SigmoidFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE SigmoidFunctor() { }
CUDA4DNN_DEVICE SigmoidFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::fast_sigmoid;
return fast_sigmoid(value);
}
};
template <class T>
struct ELUFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE ELUFunctor() { }
CUDA4DNN_DEVICE ELUFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::expm1;
return value >= T(0) ? value : expm1(value);
}
};
template <class T>
struct AbsFunctor {
struct Params { };
CUDA4DNN_DEVICE AbsFunctor() { }
CUDA4DNN_DEVICE AbsFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::abs;
return abs(value);
}
};
template <class T>
struct BNLLFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE BNLLFunctor() { }
CUDA4DNN_DEVICE BNLLFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::log1pexp;
return value > T(0) ? value + log1pexp(-value) : log1pexp(value);
}
};
template <class T>
struct PowerFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() : exp(1), scale(1), shift(0) { }
CUDA4DNN_HOST_DEVICE Params(T exp_, T scale_, T shift_) : exp(exp_), scale(scale_), shift(shift_) { }
T exp, scale, shift;
};
CUDA4DNN_DEVICE PowerFunctor() : PowerFunctor(Params{}) { }
CUDA4DNN_DEVICE PowerFunctor(const Params& params) : exp{params.exp}, scale{params.scale}, shift{params.shift} { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::pow;
return pow(shift + scale * value, exp);
}
T exp, scale, shift;
};
template <class T>
struct ExpFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() : normScale(1), normShift(0) { }
CUDA4DNN_HOST_DEVICE Params(T nScale_, T nShift_) : normScale(nScale_), normShift(nShift_) { }
T normScale, normShift;
};
CUDA4DNN_DEVICE ExpFunctor() : ExpFunctor(Params{}) { }
CUDA4DNN_DEVICE ExpFunctor(const Params& params) : normScale{params.normScale}, normShift{params.normShift} { }
CUDA4DNN_DEVICE T operator()(T value) {
using csl::device::fast_exp;
return fast_exp(normShift + normScale * value);
}
T normScale, normShift;
};
template <class T>
struct MaxFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE MaxFunctor() { }
CUDA4DNN_DEVICE MaxFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T x, T y) {
using csl::device::max;
return max(x, y);
}
};
template <class T>
struct MinFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE MinFunctor() { }
CUDA4DNN_DEVICE MinFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T x, T y) {
using csl::device::min;
return min(x, y);
}
};
template <class T>
struct SumFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE SumFunctor() { }
CUDA4DNN_DEVICE SumFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T x, T y) { return x + y; }
};
template <class T>
struct ScaledSumFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() : scale_x(1), scale_y(1) { }
CUDA4DNN_HOST_DEVICE Params(T scale_x_, T scale_y_) : scale_x(scale_x_), scale_y(scale_y_) { }
T scale_x, scale_y;
};
CUDA4DNN_DEVICE ScaledSumFunctor() : scale_x(1), scale_y(1) { }
CUDA4DNN_DEVICE ScaledSumFunctor(const Params& params) : scale_x{params.scale_x}, scale_y{params.scale_y} { }
CUDA4DNN_DEVICE T operator()(T x, T y) { return scale_x * x + scale_y * y; }
T scale_x, scale_y;
};
template <class T>
struct ProductFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE ProductFunctor() { }
CUDA4DNN_DEVICE ProductFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T x, T y) { return x * y; }
};
template <class T>
struct DivFunctor {
struct Params {
CUDA4DNN_HOST_DEVICE Params() { }
};
CUDA4DNN_DEVICE DivFunctor() { }
CUDA4DNN_DEVICE DivFunctor(const Params& params) { }
CUDA4DNN_DEVICE T operator()(T x, T y) { return x / y; }
};
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP */