grid_nms.cu 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include <cuda_runtime.h>
#include <cuda_fp16.h>

#include "math.hpp"
#include "bbox_utils.hpp"
#include "grid_stride_range.hpp"
#include "block_stride_range.hpp"
#include "execution.hpp"
#include "vector_traits.hpp"
#include "memory.hpp"

#include "../cuda4dnn/csl/stream.hpp"
#include "../cuda4dnn/csl/span.hpp"
#include "../cuda4dnn/csl/tensor.hpp"

using namespace cv::dnn::cuda4dnn::csl;
using namespace cv::dnn::cuda4dnn::csl::device;

namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {

namespace raw {

    template <class T, bool NORMALIZED_BBOX, int BLOCK_SIZE>
    __launch_bounds__(BLOCK_SIZE)
    __global__ void grid_nms(Span<unsigned int> mask_, Span<int> count_, View<T> bboxes_, size_type num_classes, index_type background_class_id, size_type topK, size_type topK_gs, float nms_threshold)
    {
        // topK_gs is topK rounded upwards to some size

        // mask: [batch_size, num_classes, topK_gs, topK_gs / 32]
        // bboxes: [batch_size, num_classes, topK, 4]
        // count: [batch_size, num_classes]

        const index_type c = blockIdx.y;
        const index_type b = blockIdx.z;

        if (c == background_class_id)
            return;

        auto mask = mask_.data() + (b * num_classes + c) * topK_gs * topK_gs / 32;
        auto bboxes = bboxes_.data() + (b * num_classes + c) * topK * 4;
        auto count = count_.data() + b * num_classes + c;

        const auto boxes = *count;
        if (boxes == 0)
            return;

        /* We divide the set of boxes into groups containing BLOCK_SIZE boxes */
        const auto num_groups = (boxes + BLOCK_SIZE - 1) / BLOCK_SIZE;

        /* We need to calculate IOUs for every pair of boxes. We can generalize and say that
         * we need to compute IOUs of every group with every other group including itself.
         */
        // Each block processes a pair of groups.
        const index_type group_i = blockIdx.x % num_groups;
        const index_type group_j = blockIdx.x / num_groups;

        /* we use __syncthreads() later but note that the following condition will cause all threads
         * in the block to exit; hence, no thread will execute a divergent __syncthreads()
         */
        if (group_i >= num_groups || group_j >= num_groups)
            return;

        /* Note that IOU(A, B) = IOU(B, A). Hence, if we compute IOU(GROUP_A, GROUP_B), we do not need
         * to compute IOU(GROUP_B, GROUP_A). We still have to compute IOU(GROUP_A, GROUP_A) though since
         * each group has many boxes and we need IOUs amongst boxes within a group.
         *
         * We arbitarily choose a scheme to exit : exit if group_i is greater than group_j. This way we only
         * compute IOUs between groups once. While nearly half the blocks are wasted, it's ok since they exit
         * early on and the working blocks are compute heavy.
         */
        if (group_i > group_j)
            return;

        /* the following variables contain the absolute box number of the first box of their respective groups */
        const auto group_i_offset = group_i * BLOCK_SIZE;
        const auto group_j_offset = group_j * BLOCK_SIZE;

        /* MAIN LOOP LOGIC:
         * We compare a box `i` from group_i with all boxes in group_j in each iteration. The box `j` is fixed
         * for each thread. The `j` exactly maps to the thread index. Hence, the `j` is a loop invariant. Each
         * thread of the block computes the overlap between box `i` and its box `j`.
         *
         * for (int i = 0; i < BLOCK_SIZE; i++)
         * {
         *    // i = box 1
         *    // j = threadIdx.x = box 2
         * }
         */

        /* The `j` box is fixed for each thread. All `i` boxes will be required for every thread.
         * We store the `i` boxes in shared memory to allow global memory coalesing.
         */
        using vector_type = get_vector_type_t<T, 4>;
        __shared__ vector_type group_i_boxes[BLOCK_SIZE];

        /* We will precompute the sizes of `i` boxes in the code where we load them. The size computation
         * is distributed across the block. Otherwise, all threads will have to compute the size of the same
         * box simultaneously in the main loop. The size is computed while the memory subsystem is busy
         * servicing requests for box coordinates; the compute resources would otherwise be idle in this phase.
         */
        /* we store the size as a float since the size can exceed fp16 limits for unnormalized boxes */
        __shared__ float group_i_size[BLOCK_SIZE];

        const auto bboxes_vPtr = vector_type::get_pointer(bboxes);

        // load `i` boxes and precompute their sizes
        {
            int i = threadIdx.x;
            if (group_i_offset + i < boxes)
            {
                vector_type box;
                v_load(box, bboxes_vPtr[group_i_offset + i]);
                v_store(group_i_boxes[i], box);

                BoundingBox bbox;
                bbox.xmin = box.data[0];
                bbox.ymin = box.data[1];
                bbox.xmax = box.data[2];
                bbox.ymax = box.data[3];

                group_i_size[i] = compute_bbox_size<NORMALIZED_BBOX>(bbox);
            }
        }

        __syncthreads();

        /* We compute overlap between boxes and check if the IOU exceeds the nms threshold.
         * We store the result (exceeds or below nms_thresold) in a two-dimensional matrix.
         * (i, j) is set to one if the overlap between i and j is within the nms threshold.
         * We pack 32 results into one 32-bit integer. The effective memory layout of the
         * matrix hence is (BLOCK_SIZE, BLOCK_SIZE / 32).
         */
        __shared__ unsigned int mask_shared[BLOCK_SIZE * BLOCK_SIZE / 32];

        // load box `j` and precompute its size (fixed per thread)
        BoundingBox bbox_j;
        float bbox_j_size = 0;
        if (group_j_offset + threadIdx.x < boxes)
        {
            vector_type box;
            v_load(box, bboxes_vPtr[group_j_offset + threadIdx.x]);

            bbox_j.xmin = box.data[0];
            bbox_j.ymin = box.data[1];
            bbox_j.xmax = box.data[2];
            bbox_j.ymax = box.data[3];

            bbox_j_size = compute_bbox_size<NORMALIZED_BBOX>(bbox_j);
        }

        /* Each thread computes a predicate which is broadcasted across the warp to obtain a 32-bit mask.
         * The lane zero thread of each warp saves the mask. We store the offset to the mask array beforehand
         * to save cycles in the compute-intensive main loop.
         */
        auto mask_offset = threadIdx.x / 32;

        /* The main loop is compute intensive and causes the kernel to be overall compute-bound. Hence,
         * this loop has been highly tuned. Please profile and verify carefully before making changes.
         */
        /* UNROLL_SIZE is the number of boxes that must be processed per iteration. We manually unroll
         * the loop since the compiler cannot effectively unroll on its own preassumably due to presence
         * of instructions forcing warp synchronization.
         */
        constexpr int UNROLL_SIZE = 4;

        #pragma unroll 8
        for (int s = 0; s < BLOCK_SIZE; s += UNROLL_SIZE)
        {
            bool do_not_reject_j[UNROLL_SIZE];

            #pragma unroll
            for (int k = 0; k < UNROLL_SIZE; k++)
            {
                int i = s + k;

                /* The number of boxes need not necessarily be a multiple of BLOCK_SIZE.
                 * However, the shared memory allocated can hold BLOCK_SIZE boxes from
                 * each group. Accessing the undefined regions of shared memory is
                 * a valid memory operation as long as the memory has been allocated.
                 *
                 * The condition below is only required when one of the groups does not
                 * fully filled with valid boxes. This situations are relatively rare. It's
                 * more common to see both groups completely filled.
                 *
                 * We comment this condition to improve the performance of the common case.
                 * This leads to a net improvement.
                 */
                // if (group_i_offset + i < boxes && group_j_offset + threadIdx.x < boxes)
                {
                    BoundingBox bbox_i;
                    float bbox_i_size;
                    {
                        vector_type box;
                        v_load(box, group_i_boxes[i]);
                        bbox_i.xmin = box.data[0];
                        bbox_i.ymin = box.data[1];
                        bbox_i.xmax = box.data[2];
                        bbox_i.ymax = box.data[3];

                        bbox_i_size = group_i_size[i];
                    }

                    using device::min;
                    using device::max;

                    BoundingBox intersect_bbox;
                    intersect_bbox.xmin = max(bbox_i.xmin, bbox_j.xmin);
                    intersect_bbox.ymin = max(bbox_i.ymin, bbox_j.ymin);
                    intersect_bbox.xmax = min(bbox_i.xmax, bbox_j.xmax);
                    intersect_bbox.ymax = min(bbox_i.ymax, bbox_j.ymax);

                    float intersect_size = compute_bbox_size<NORMALIZED_BBOX>(intersect_bbox);

                    using device::fast_divide_ftz;
                    float iou = fast_divide_ftz(intersect_size, bbox_i_size + bbox_j_size - intersect_size);
                    do_not_reject_j[k] = iou <= nms_threshold;
                }
            }

            #pragma unroll
            for (int k = 0; k < UNROLL_SIZE; k++)
            {
                // FORWARD_COMPATIBILITY_TAG: WARP_SIZE_DEPENDENT_CODE
                auto predicate = __ballot_sync(0xFFFFFFFF, do_not_reject_j[k]);
                if (threadIdx.x % 32 == 0)
                    mask_shared[mask_offset] = predicate;

                /* The following operation should logically be inside the previous if branch. Note that `mask_offset`
                 * is only used by lane zero threads. Hence, there is no harm in executing it other threads as it is
                 * unused there.
                 *
                 * Keeping it inside prevents the compiler from treating it as a constexpr addition to the address in
                 * successive unrolled iterations. A register is used and instructions are emitted to multiply the
                 * addend by four to obtain the byte offset. Pulling it out of the branch makes the compiler do constexpr
                 * addition on the address in successive unrolled iterations.
                 */
                mask_offset += BLOCK_SIZE / 32;
            }
        }

        __syncthreads();

        /* The mask data is organized as a two-dimensional bit matrix of size topK_gs * topK_gs.
         * (i, j) is set to true if the overlap between `i` and `j` is beyond the nms threshold.
         * We pack 32 results into one 32-bit integer. So the effective memory layout is topK_gs * topK_gs / 32.
         */

        /* Each box `i` was compared with BLOCK_SIZE `j` boxes. This amounts to BLOCK_SIZE / 32
         * 32-bit integers per box `i`.
         */
        using mask_vector_type = get_vector_type_t<unsigned int, BLOCK_SIZE / 32>;

        const int i = threadIdx.x;

        auto mask_shared_vPtr = mask_vector_type::get_pointer(DevicePtr<unsigned>(mask_shared));
        mask_vector_type temp;
        v_load(temp, mask_shared_vPtr[i]);
        for (int i = 0; i < mask_vector_type::size(); i++)
            temp.data[i] = __brev(temp.data[i]);

        auto mask_vPtr = mask_vector_type::get_pointer(mask);
        v_store(mask_vPtr[((group_i_offset + i) * topK_gs + group_j_offset) / 32 / mask_vector_type::size()], temp);
    }

    template <int ITEMS_PER_THREAD, int BLOCK_SIZE>
    __launch_bounds__(BLOCK_SIZE)
    __global__ void grid_nms_collect(Span<int> indices_, Span<int> count_, View<unsigned int> mask_, size_type num_classes, index_type background_class_id, size_type topK, size_type topK_gs_by32)
    {
        const index_type c = blockIdx.x;
        if (c == background_class_id)
            return;

        const index_type b = blockIdx.y;

        // topK_gs is topK rounded upwards to some size

        // indices: [batch_size, num_classes, topK]
        // count: [batch_size, num_classes]
        // mask: [batch_size, num_classes, topK_gs, topK_gs / 32]

        auto indices = indices_.data() + (b * num_classes + c) * topK;
        auto count = count_.data() + (b * num_classes + c);
        auto mask = mask_.data() + (b * num_classes + c) * topK_gs_by32 * 32 * topK_gs_by32;

        const auto boxes = *count;
        if (boxes == 0)
            return;

        /* We have a fixed number of threads and an arbitary number of boxes. We use an array of
         * bits to store which boxes haven't been eliminated and which are still active. We organize
         * the array of bits into a matrix of bits of the shape (num_rows, BLOCK_SIZE, 32) which
         * is equivalent to (num_rows, BLOCK_SIZE) where the type is a 32-bit unsigned integer.
         * `num_rows` is the minimum number of rows required to cover all the boxes.
         *
         * Each thread handles a specific column in the matrix. To improve performance, we process
         * `ITEMS_PER_THREAD` number of elements per thread. This changes the shape to (num_rows,
         * ROW_WIDTH) where ROW_WIDTH is BLOCK_SIZE * ITEMS_PER_THREAD.
         */
         constexpr int ROW_WIDTH = BLOCK_SIZE * ITEMS_PER_THREAD;

         const index_type num_32b_masks = static_cast<unsigned>(boxes + 31) / 32;
         const index_type num_rows = static_cast<unsigned>(num_32b_masks + ROW_WIDTH - 1) / ROW_WIDTH;

        extern __shared__ unsigned int active_boxes[]; // the matrix described earlier

        #pragma unroll 1
        for (auto idx : block_stride_range<BLOCK_SIZE>(num_32b_masks))
            active_boxes[idx] = (idx == num_32b_masks - 1) ? __brev((1u << (boxes % 32)) - 1) : 0xFFFFFFFF;

        __syncthreads();

        using vector_type = get_vector_type_t<unsigned int, ITEMS_PER_THREAD>;
        auto mask_vPtr = vector_type::get_pointer(mask);
        auto shared_vPtr = vector_type::get_pointer(DevicePtr<unsigned>(active_boxes));

        int index_temp;
        int thread0_count = 0;
        int thread_id = threadIdx.x;

        for (int step = 0; step < num_32b_masks; step++)
        {
            auto current_active = active_boxes[step];
            while (current_active)
            {
                const index_type bit = __clz(current_active);
                const index_type i = step * 32 + bit;

                const int mask_offset = static_cast<unsigned>(i * topK_gs_by32) / ITEMS_PER_THREAD;

                /* We fetch the index from the memory and store it in a register. We will not use it until
                 * much later. This helps avoid a long scoreboard stall.
                 */
                if (thread_id == 0)
                    index_temp = indices[i];

                __syncthreads();

                if (threadIdx.x == 0)
                    active_boxes[step] = current_active ^ (0x80000000 >> bit);

                __syncthreads();

                #pragma unroll 1
                for (int r = 0; r < num_rows; r++)
                {
                    const int idx = r * BLOCK_SIZE + thread_id;
                    if ((step & ~(ITEMS_PER_THREAD - 1)) <= idx * ITEMS_PER_THREAD && idx * ITEMS_PER_THREAD < num_32b_masks)
                    {
                        auto active_boxes_vec = shared_vPtr[idx];
                        auto mask_vec = mask_vPtr[mask_offset + idx];
                        for (int i = 0; i < vector_type::size(); i++)
                            active_boxes_vec.data[i] &= mask_vec.data[i];
                        shared_vPtr[idx] = active_boxes_vec;
                    }
                }

                __syncthreads();

                if (thread_id == 0)
                {
                    indices[thread0_count] = index_temp;
                    thread0_count++;
                }

                current_active = active_boxes[step];
            }
        }

        if (threadIdx.x == 0)
            *count = thread0_count;
    }
}

constexpr int GROUP_SIZE = 128;

static std::size_t getAlignedTopK(std::size_t topK)
{
    auto remainder = topK % GROUP_SIZE;
    if (remainder == 0)
        return topK;
    return topK + (GROUP_SIZE - remainder);
}

std::size_t getGridNMSWorkspaceSizePerBatchItem(std::size_t num_classes, std::size_t classwise_topK)
{
    auto topK_gs = getAlignedTopK(classwise_topK);
    return num_classes * topK_gs * topK_gs / 32 * sizeof(unsigned int);
}

template <class T>
void grid_nms(const Stream& stream, Span<unsigned int> workspace, TensorSpan<int> indices, TensorSpan<int> count, TensorView<T> bboxes, int background_class_id, bool normalized_bbox, float nms_threshold)
{
    // workspace: [batch_size, num_classes, topK_gs, topK_gs / 32]
    // indices: [batch_size, num_classes, topK]
    // count: [batch_size, num_classes]
    // bboxes: [batch_size, num_classes, topK, 4] (only first count[b][c] boxes are read)

    const auto batch_size = indices.get_axis_size(0);
    CV_Assert(count.get_axis_size(0) == batch_size);
    CV_Assert(bboxes.get_axis_size(0) == batch_size);

    const auto num_classes = indices.get_axis_size(1);
    CV_Assert(count.get_axis_size(1) == num_classes);
    CV_Assert(bboxes.get_axis_size(1) == num_classes);

    const auto topK = indices.get_axis_size(2);
    CV_Assert(bboxes.get_axis_size(2) == topK);

    CV_Assert(bboxes.get_axis_size(3) == 4);

    const auto topK_gs = getAlignedTopK(topK);
    CV_Assert(workspace.size() >= topK_gs * topK_gs / 32);

    const auto boxes = topK;
    const auto num_groups = (boxes + GROUP_SIZE - 1) / GROUP_SIZE;

    {
        // grid = (num_groups * num_groups, num_classes, batch_size)
        // if the background class is the last class, we can reduce grid y dim by one
        auto grid_num_classes = num_classes; //(background_class_id == num_classes - 1) ? num_classes - 1 : num_classes;

        constexpr int BLOCK_SIZE = GROUP_SIZE;

        dim3 grid_size(num_groups * num_groups, grid_num_classes, batch_size);
        dim3 block_size(BLOCK_SIZE);
        auto policy = execution_policy(grid_size, block_size, stream);

        if (normalized_bbox)
        {
            auto kernel = raw::grid_nms<T, true, BLOCK_SIZE>;
            launch_kernel(kernel, policy, workspace, count, bboxes, num_classes, background_class_id, topK, topK_gs, nms_threshold);
        }
        else
        {
            auto kernel = raw::grid_nms<T, false, BLOCK_SIZE>;
            launch_kernel(kernel, policy, workspace, count, bboxes, num_classes, background_class_id, topK, topK_gs, nms_threshold);
        }
    }

    {
        // grid = (num_classes, batch_size)
        // if the background class is the last class, we can reduce grid x dim by one
        auto grid_num_classes = num_classes; //(background_class_id == num_classes - 1) ? num_classes - 1 : num_classes;

        constexpr int BLOCK_SIZE = 64;

        constexpr int ITEMS_PER_THREAD = 4;
        auto kernel = raw::grid_nms_collect<ITEMS_PER_THREAD, BLOCK_SIZE>;

        dim3 grid_size(grid_num_classes, batch_size);

        auto sharedMem = topK_gs / 32 * 4;
        auto policy = execution_policy(grid_size, BLOCK_SIZE, sharedMem, stream);
        launch_kernel(kernel, policy, indices, count, workspace, num_classes, background_class_id, topK, topK_gs / 32);
    }
}

std::size_t getGridNMSWorkspaceSizePerBatchItem(std::size_t num_classes, std::size_t classwise_topK);

template void grid_nms(const Stream& stream, Span<unsigned int> workspace, TensorSpan<int> indices, TensorSpan<int> count, TensorView<__half> bboxes, int, bool normalized_bbox, float nms_threshold);
template void grid_nms(const Stream& stream, Span<unsigned int> workspace, TensorSpan<int> indices, TensorSpan<int> count, TensorView<float> bboxes, int, bool normalized_bbox, float nms_threshold);

}}}} /* namespace cv::dnn::cuda4dnn::kernels */