tensor.hpp 47 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_TENSOR_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_TENSOR_HPP

#include "nvcc_defs.hpp"
#include "memory.hpp"
#include "cublas.hpp"
#include "cudnn.hpp"
#include "span.hpp"

#include "../cxx_utils/resizable_static_array.hpp"
#include "../cxx_utils/is_iterator.hpp"

#include <opencv2/core.hpp>

#include <cstddef>
#include <cstdint>
#include <type_traits>
#include <array>
#include <functional>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <vector>
#include <utility>

#ifndef CSL_MAX_TENSOR_RANK
    #define CSL_MAX_TENSOR_RANK 6
#endif

namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {

    /** \file tensor.hpp
     *
     *     TYPE     | OWNERSHIP | MUTABLE
     * ------------ + --------- + --------
     *    Tensor    |    Yes    |   Yes
     *  TensorSpan  |    No     |   Yes
     *  TensorView  |    No     |   No
     *
     * Tensor is implicitly convertible to TensorSpan and TensorView
     * TensorSpan is implicitly convertible to TensorView
     *
     * Concepts and template parameter naming convention:
     * - "MutableTensorType" can refer to a Tensor or TensorSpan
     * - "ImmutableTensorType" can refer to a Tensor, TensorSpan or TensorView
     * - "TensorType" can refer to a Tensor, TensorSpan or TensorView
     *
     * "ImmutableTensorType" is used when the tensor data might be used.
     * "TensorType" is used when only meta-information such as the size or shape is required, i.e. the data won't be touched
     */

    /** if the \p axis is a negative index, the equivalent positive index is returned; otherwise, returns \p axis */
    CUDA4DNN_HOST_DEVICE constexpr std::size_t clamp_axis(int axis, std::size_t rank) {
        return axis < 0 ? axis + rank : axis;
    }

    /** @brief multi-dimensional contiguous non-copyable GPU tensor
     *
     * \tparam  T       type of data stored
     *
     * @note scalars or zero rank tensors are not supported
     * @note the maximum rank supported is controlled by the `CSL_MAX_TENSOR_RANK` preprocessor symbol
     */
    template <class T>
    class Tensor {
        static_assert(std::is_standard_layout<T>::value, "T must satisfy StandardLayoutType");

    public:
        using value_type    = typename ManagedPtr<T>::element_type;
        using pointer       = typename ManagedPtr<value_type>::pointer;
        using const_pointer = typename ManagedPtr<value_type>::const_pointer;
        using size_type     = typename ManagedPtr<value_type>::size_type;

        Tensor() noexcept { }
        Tensor(const Tensor&) = delete;
        Tensor(Tensor&& other) noexcept {
            data = std::move(other.data);
            shape = other.shape;
            other.shape.clear();
        }

        /** @brief constructs a tensor of a specific shape
         *
         * Whatever arguments are accepted by the resize methods are accepted here.
         */
        template <class ...Args>
        Tensor(Args&&... sizes) { resize(std::forward<Args>(sizes)...); }

        Tensor& operator=(const Tensor&) = delete;
        Tensor& operator=(Tensor&& other) noexcept {
            data = std::move(other.data);
            shape = other.shape;
            other.shape.clear();
            return *this;
        }

        /** returns true if the tensor is empty (or uninitialized) */
        bool empty() const noexcept { return shape.size() == 0; }

        /** returns the total number of elements in the tensor
         *
         * Pre-conditions:
         * - tensor must be non-empty
         */
        size_type size() const noexcept {
            CV_Assert(!empty());
            return std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<size_type>());
        }

        /** returns the rank of the tensor
         *
         * Pre-conditions:
         * - tensor must be non-empty
         */
        size_type rank() const noexcept {
            CV_Assert(!empty());
            return shape.size();
        }

        /** @brief returns the length of the axis
         *
         * Every axis is assigned a zero-based index which can be used to select an axis.
         * Negative index can be used to select an axis from the end.
         *
         * Examples:
         * > -1 represents the last axis
         * > 0 represents the first axis
         * > 1 represents the second axis
         *
         * Pre-conditions:
         * - tensor must be non-empty
         * - the axis must be in the range [-rank(), rank())
         */
        size_type get_axis_size(int axis) const noexcept {
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            return shape[axis];
        }

        /** @brief returns the combined size of the axes in an axis range
         *
         * if the shape is [3 x 5 x 7 x 11]
         * - `size_range(0, 2)` will return 3 x 5 = 15
         * - `size_range(1, 3)` will return 5 x 7 = 35
         * - `size_range(0, 4)` will return 3 x 5 x 7 x 11 = 1155
         *
         * Pre-conditions:
         * - tensor must be non-empty
         * - `axis_start` must be less than or equal to `axis_end`
         * - `axis_end` must be less than or equal to the rank
         *
         * returns one if the two `axis_start` and `axis_end` are equal
         */
        size_type size_range(size_type axis_start, size_type axis_end) const noexcept {
            CV_Assert(!empty());
            CV_Assert(axis_start <= axis_end);
            CV_Assert(axis_end <= rank());
            auto start = std::begin(shape) + axis_start;
            auto end = std::begin(shape) + axis_end;
            return std::accumulate(start, end, 1, std::multiplies<size_type>());
        }

        /** returns an std::vector containing axis lengths starting from axis zero
         *
         * Pre-conditions:
         * - tensor must be non-empty
         *
         * Exception Guarantee: Strong
         */
        std::vector<size_type> shape_as_vector() const {
            CV_Assert(!empty());
            return std::vector<size_type>(std::begin(shape), std::end(shape));
        }

        /** returns a pointer to mutable device memory owned by the tensor */
        pointer get() noexcept { return data.get(); }

        /** returns a pointer to immutable device memory owned by the tensor */
        const_pointer get() const noexcept { return data.get(); }

        /** @brief releases the memory owned by the tensor
         *
         * Pre-conditions:
         * - tensor must be non-empty
         *
         * Exception Guarantee: Strong
         */
        void clear() {
            CV_Assert(!empty());
            data.reset();
            shape.clear();
        }

        /** @brief resizes the tensor
         *
         * Pre-conditions:
         * - [start, end) represents a forward range containing the length of the axes in order starting from axis zero
         * - number of lengths provided must not exceed the maximum tensor rank (CSL_MAX_TENSOR_RANK)
         * - the sizes must be positive integers
         *
         * Exception Guarantee: Strong
         */
        template <class ForwardItr>
        typename std::enable_if<cxx_utils::is_forward_iterator<ForwardItr>::value, void>
        ::type resize(ForwardItr start, ForwardItr end) {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= CSL_MAX_TENSOR_RANK);

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;
            auto total = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
            data.reset(total);

            shape.assign(start, end);
        }

        /** @brief resizes the tensor
         * constructs a range out of the arguments and invokes the range-based resize method
         */
        template <class ...Sizes>
        void resize(Sizes... new_sizes_) {
            static_assert(sizeof...(Sizes) <= CSL_MAX_TENSOR_RANK, "required rank exceeds maximum supported rank");
            static_assert(sizeof...(Sizes) > 0, "no sizes provided");
            std::array<size_type, sizeof...(Sizes)> new_sizes = { static_cast<size_type>(new_sizes_)... };
            resize(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief resizes the tensor
         *
         * Pre-conditions:
         * - the reference tensor must be non-empty
         *
         * Exception Guarantee: Strong
         */
        template <class TensorType>
        void resize_as(const TensorType& tensor) {
            CV_Assert(!tensor.empty());
            cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> new_sizes(tensor.rank());
            for (int i = 0; i < new_sizes.size(); i++)
                new_sizes[i] = tensor.get_axis_size(i);
            resize(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief reshapes the tensor
         *
         * Length deduction:
         * The length of at most one axis can be deduced using the total size constraint. The axis can
         * be marked for deduction by specifying the size as -1.
         *
         * The axes for which no size was provided (excluding -1) will be assumed to be one.
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - [start, end) represents a forward range containing the length of the axes starting from axis zero
         * - the number of lengths provided must be less than or equal to the tensor rank
         * - at most one axis length is allowed for length deduction
         * - the lengths provided must ensure that the total number of elements remains unchanged
         *
         * Exception Guarantee: Strong
         */
        template <class ForwardItr>
        typename std::enable_if<cxx_utils::is_forward_iterator<ForwardItr>::value, void>
        ::type reshape(ForwardItr start, ForwardItr end) {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= rank());

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;

            /* the user may leave at most one axis size for deduction by specifying -1 */
            auto sizes_to_deduce = std::count(start, end, -1);
            if (sizes_to_deduce > 1) { CV_Error(Error::StsBadArg, "only one axis size can be deduced"); }

            /* sizes must be positive numbers with the exception of -1 */
            auto invalid_sizes = std::count_if(start, end, [](ItrValueType x) {
                return !(x > 0 || x == -1);
            });
            if (invalid_sizes) { CV_Error(Error::StsBadArg, "invalid axis size"); }

            /* compute the total number of elements in the new tensor */
            size_type unknown_size = 0;
            auto total = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
            if (total < 0) {
                /* there is an unknown size */
                if (std::abs(total) <= size()) {
                    unknown_size = size() / std::abs(total);
                    total = size();
                }
                /* Edge case: if `total` is already more than size(), skip the deduction as it's impossible
                ** Since `total` is negative, the size check which follows will fail and throw an error
                */
            }

            /* the number of elements before and after reshape must be exactly same */
            if (total != size()) {
                CV_Error(Error::StsBadArg, "new axes do not preserve the tensor element count");
            }

            /* we assume the size of the unspecified axes to be one */
            std::fill(std::begin(shape), std::end(shape), 1);
            std::copy_backward(start, end, std::end(shape));

            /* replace the unknown axis with the correct value */
            std::replace(std::begin(shape), std::end(shape), size_type(-1), unknown_size);
        }

        /** @brief reshapes the tensor
         * constructs a range out of the arguments and invokes range-based reshape method
         */
        template <class ...Sizes>
        void reshape(Sizes... new_sizes_) {
            static_assert(sizeof...(Sizes) <= CSL_MAX_TENSOR_RANK, "required rank exceeds maximum supported rank");
            static_assert(sizeof...(Sizes) > 0, "no sizes provided");
            std::array<std::int64_t, sizeof...(Sizes)> new_sizes = { static_cast<std::int64_t>(new_sizes_)... };
            reshape(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief reshapes the tensor
         *
         * Pre-conditions:
         * - the reference tensor must be a non-empty tensor
         * - the reference tensor's rank must be lesser than or equal to the rank of target tensor
         *
         * Exception Guarantee: Strong
         */
        template <class TensorType>
        void reshape_as(const TensorType& tensor) {
            CV_Assert(!tensor.empty());
            cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> new_sizes(tensor.rank());
            for (int i = 0; i < new_sizes.size(); i++)
                new_sizes[i] = tensor.get_axis_size(i);
            reshape(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief squeezes the tensor
         *
         * removes all axes of unit size
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - the tensor's rank must be at least two
         *
         * Exception Guarantee: Strong
         */
        void squeeze() {
            CV_Assert(!empty());
            CV_Assert(rank() >= 2);
            auto itr = std::remove(std::begin(shape), std::end(shape), 1);
            shape.resize(itr - std::begin(shape));
        }

        /** @brief squeezes the tensor
         *
         * removes the specified axis if the axis length is one; otherwise, ignores the request
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - the tensor's rank must be at least two
         *
         * Exception Guarantee: Strong
         */
        void squeeze(int axis) {
            CV_Assert(!empty());
            CV_Assert(rank() >= 2);
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            shape.erase(std::begin(shape) + axis);
        }

        /** @brief squeezes the tensor
         *
         * removes leading singleton axes until the tensor's rank is equal to the requested rank
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - the tensor's rank must be at least two
         * - the tensor's rank must be at least the requested rank
         * - the tensor must be squeezable up to the requested rank
         *
         * Exception Guarantee: Strong
         */
        void squeeze_to(int r) {
            CV_Assert(!empty());
            CV_Assert(rank() >= r);
            CV_Assert(std::all_of(std::begin(shape), std::end(shape) - r, [](size_type x){ return x == 1; }));
            std::copy(std::end(shape) - r, std::end(shape), std::begin(shape));
            shape.resize(r);
        }

        /** @brief unsqueezes the tensor
         *
         * adds a axis of unit size at the requested before the specified axis
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - the tensor's rank must be less than the maximum supported rank (CSL_MAX_TENSOR_RANK)
         *
         * Exception Guarantee: Strong
         */
        void unsqueeze(int axis = 0) {
            CV_Assert(!empty());
            CV_Assert(rank() < CSL_MAX_TENSOR_RANK);
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            shape.insert(std::begin(shape) + axis, 1);
        }

        operator Span<T>() noexcept { return Span<T>(data.get(), size()); }
        operator View<T>() const noexcept { return View<T>(data.get(), size()); }

        friend void swap(Tensor& lhs, Tensor& rhs) noexcept {
            using std::swap;
            swap(lhs.data, rhs.data);
            swap(lhs.shape, rhs.shape);
        }

    private:
        cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> shape;
        ManagedPtr<value_type> data;
    };

    /** @brief provides a non-owning mutable span of a Tensor
     *
     * \tparam  T       type of data stored by the tensor
     *
     * A span is valid if and only if the following hold true:
     * - span is non-empty
     * - spanned memory is still allocated
     *
     * A span may be used if and only if it is valid.
     */
    template <class T>
    class TensorSpan {
    public:
        using value_type    = typename Tensor<T>::value_type;
        using pointer       = typename Tensor<T>::pointer;
        using const_pointer = typename Tensor<T>::const_pointer;
        using size_type     = typename Tensor<T>::size_type;

        TensorSpan() noexcept : ptr{ nullptr } { }
        TensorSpan(const TensorSpan&) noexcept = default;
        TensorSpan(Tensor<T>& tensor) noexcept : ptr{ tensor.get() } {
            const auto rank = tensor.rank();
            shape.resize(rank);
            for (int i = 0; i < rank; i++)
                shape[i] = tensor.get_axis_size(i);
        }

        template <class ForwardItr>
        TensorSpan(pointer ptr_, ForwardItr start, ForwardItr end) : ptr{ ptr_ } {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= CSL_MAX_TENSOR_RANK);

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;
            if (std::any_of(start, end, [](ItrValueType x) { return x <= 0; })) {
                CV_Error(Error::StsBadArg, "the given shape contains negative or zero size");
            }

            shape.assign(start, end);
        }

        /** creates a subspan of a tensor (or span); refer to subspan method for more details */
        template <class... Args>
        TensorSpan(TensorSpan other, size_type offset, Args&&... args)
            : TensorSpan(other.subspan(offset, std::forward<Args>(args)...)) { }

        /** returns true if the span is empty */
        bool empty() const noexcept { return shape.size() == 0; }

        /** returns the total number of elements in the span
         *
         * Pre-conditions:
         * - span must be non-empty
         */
        size_type size() const noexcept {
            CV_Assert(!empty());
            return std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<size_type>());
        }

        /** returns the rank of the span
         *
         * Pre-conditions:
         * - span must be non-empty
         */
        size_type rank() const noexcept {
            CV_Assert(!empty());
            return shape.size();
        }

        /** @brief returns the length of the axis
         *
         * Every axis is assigned a zero-based index which can be used to select an axis.
         * Negative index can be used to select an axis from the end.
         *
         * Examples:
         * > -1 represents the last axis
         * > 0 represents the first axis
         * > 1 represents the second axis
         *
         * Pre-conditions:
         * - span must be non-empty
         * - the axis must be in the range [-rank(), rank())
         */
        size_type get_axis_size(int axis) const noexcept {
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            return shape[axis];
        }

        /** @brief returns the combined size of the axes in an axis range
         *
         * if the shape is [3 x 5 x 7 x 11]
         * - `size_range(0, 2)` will return 3 x 5 = 15
         * - `size_range(1, 3)` will return 5 x 7 = 35
         * - `size_range(0, 4)` will return 3 x 5 x 7 x 11 = 1155
         *
         * Pre-conditions:
         * - span must be non-empty
         * - `axis_start` must be less than or equal to `axis_end`
         * - `axis_end` must be less than or equal to the rank
         *
         * returns one if the two `axis_start` and `axis_end` are equal
         */
        size_type size_range(size_type axis_start, size_type axis_end) const noexcept {
            CV_Assert(!empty());
            CV_Assert(axis_start <= axis_end);
            CV_Assert(axis_end <= rank());
            auto start = std::begin(shape) + axis_start;
            auto end = std::begin(shape) + axis_end;
            return std::accumulate(start, end, 1, std::multiplies<size_type>());
        }

        /** returns an std::vector containing axis lengths starting from axis zero
         *
         * Pre-conditions:
         * - span must be non-empty
         *
         * Exception Guarantee: Strong
         */
        std::vector<size_type> shape_as_vector() const {
            CV_Assert(!empty());
            return std::vector<size_type>(std::begin(shape), std::end(shape));
        }

        /** returns a pointer to mutable device memory */
        pointer get() const noexcept { return ptr; }

        /** @brief clears the span
         *
         * Pre-conditions:
         * - span must be non-empty
         *
         * Exception Guarantee: Strong
         */
        void clear() noexcept {
            CV_Assert(!empty());
            ptr = nullptr;
            shape.clear();
        }

        /** @brief reshapes the span
         *
         * Length deduction:
         * The length of at most one axis can be deduced using the total size constraint. The axis can
         * be marked for deduction by specifying the corresponding size as -1.
         *
         * The axes for which no size was provided (excluding -1) will be assumed to be one.
         *
         * Pre-conditions:
         * - the span must be non-empty
         * - [start, end) represents a forward range containing the length of the axes in order
         * - the number of axis lengths must be less than or equal to the rank
         * - at most one axis length is allowed for length deduction
         * - the lengths provided must ensure that the total number of elements remains unchanged
         *
         * Exception Guarantee: Strong
         */
        template <class ForwardItr>
        typename std::enable_if<cxx_utils::is_forward_iterator<ForwardItr>::value, void>
        ::type reshape(ForwardItr start, ForwardItr end) {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= rank());

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;

            /* the user may leave at most one axis size for deduction by specifying -1 */
            auto sizes_to_deduce = std::count(start, end, -1);
            if (sizes_to_deduce > 1) { CV_Error(Error::StsBadArg, "only one axis size can be deduced"); }

            /* sizes must be positive numbers with the exception of -1 */
            auto invalid_sizes = std::count_if(start, end, [](ItrValueType x) {
                return !(x > 0 || x == -1);
            });
            if (invalid_sizes) { CV_Error(Error::StsBadArg, "invalid axis size"); }

            /* compute the total number of elements in the new tensor */
            size_type unknown_size = 0;
            auto total = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
            if (total < 0) {
                /* there is an unknown size */
                if (std::abs(total) <= size()) {
                    unknown_size = size() / std::abs(total);
                    total = size();
                }
                /* Edge case: if `total` is already more than size(), skip the deduction as it's impossible
                ** Since `total` is negative, the size check which follows will fail and throw an error
                */
            }

            /* the number of elements before and after reshape must be exactly same */
            if (total != size()) {
               CV_Error(Error::StsBadArg, "new axes do not preserve the tensor element count");
            }

            /* we assume the size of the unspecified axes to be one */
            std::fill(std::begin(shape), std::end(shape), 1);
            std::copy_backward(start, end, std::end(shape));

            /* replace the unknown axis with the correct value */
            std::replace(std::begin(shape), std::end(shape), size_type(-1), unknown_size);
        }

        /** @brief reshapes the tensor
         * constructs a range out of the arguments and invokes the range-based reshape method
         */
        template <class ...Sizes>
        void reshape(Sizes... new_sizes_) {
            static_assert(sizeof...(Sizes) <= CSL_MAX_TENSOR_RANK, "unsupported tensor rank");
            static_assert(sizeof...(Sizes) > 0, "no sizes provided");
            std::array<std::int64_t, sizeof...(Sizes)> new_sizes = { static_cast<std::int64_t>(new_sizes_)... };
            reshape(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief reshapes the span
         *
         * Pre-conditions:
         * - the reference tensor/span/view must be non-empty
         * - the reference tensor/span/view's rank must be less than or equal to the rank of the span
         *
         * Exception Guarantee: Strong
         */
        template <class TensorType>
        void reshape_as(const TensorType& tensor) {
            CV_Assert(!tensor.empty());
            cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> new_sizes(tensor.rank());
            for (int i = 0; i < new_sizes.size(); i++)
                new_sizes[i] = tensor.get_axis_size(i);
            reshape(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief squeezes the tensor
         *
         * removes all axes of unit size
         *
         * Pre-conditions:
         * - the span must be non-empty
         * - the span's rank must be at least two
         *
         * Exception Guarantee: Strong
         */
        void squeeze() {
            CV_Assert(!empty());
            CV_Assert(rank() >= 2);
            auto itr = std::remove(std::begin(shape), std::end(shape), 1);
            shape.resize(itr - std::begin(shape));
        }

        /** @brief squeezes the tensor
         *
         * removes the specified axis if the axis length is one; otherwise, ignores the request
         *
         * Pre-conditions:
         * - the span must be non-empty
         * - the span's rank must be at least two
         *
         * Exception Guarantee: Strong
         */
        void squeeze(int axis) {
            CV_Assert(!empty());
            CV_Assert(rank() >= 2);
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            shape.erase(std::begin(shape) + axis);
        }

        /** @brief squeezes the tensor
         *
         * removes leading singleton axes until the tensor's rank is equal to the requested rank
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - the tensor's rank must be at least two
         * - the tensor's rank must be at least the requested rank
         * - the tensor must be squeezable up to the requested rank
         *
         * Exception Guarantee: Strong
         */
        void squeeze_to(int r) {
            CV_Assert(!empty());
            CV_Assert(rank() >= r);
            CV_Assert(std::all_of(std::begin(shape), std::end(shape) - r, [](size_type x){ return x == 1; }));
            std::copy(std::end(shape) - r, std::end(shape), std::begin(shape));
            shape.resize(r);
        }

        /** @brief unsqueezes the tensor
         *
         * adds a axis of unit size at the requested before the specified axis
         *
         * Pre-conditions:
         * - the span must be non-empty
         * - the span's rank must be less than the maximum supported rank (CSL_MAX_TENSOR_RANK)
         *
         * Exception Guarantee: Strong
         */
        void unsqueeze(int axis = 0) {
            CV_Assert(!empty());
            CV_Assert(rank() < CSL_MAX_TENSOR_RANK);
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            shape.insert(std::begin(shape) + axis, 1);
        }

        /** @brief obtains a subspan of the span
         *
         * Pre-conditions:
         * - the span must be non-empty
         * - the `offset` must be less than the size of the span
         * - [start, end) represents a forward range containing length of the subspan axes
         * - the lengths provided must ensure that the number of elements does not exceed (old size - offset)
         *
         * Exception Guarantee: Strong
         */
        template <class ForwardItr>
        typename std::enable_if<cxx_utils::is_forward_iterator<ForwardItr>::value, TensorSpan>
        ::type subspan(size_type offset, ForwardItr start, ForwardItr end) const {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= rank());

            auto cur_size = size();
            CV_Assert(offset < cur_size);

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;

            /* sizes must be positive numbers */
            auto invalid_sizes = std::count_if(start, end, [](ItrValueType x) {
                return !(x > 0);
            });
            if (invalid_sizes) { CV_Error(Error::StsBadArg, "invalid axis size"); }

            /* the number of elements must be equal to the new size */
            auto max_size = (cur_size - offset);
            auto total = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
            if (total > max_size) {
                CV_Error(Error::StsBadArg, "axis lengths lead to OOB accesses");
            }

            TensorSpan temp;
            temp.shape.assign(start, end);
            temp.ptr = ptr + offset;
            return temp;
        }

        /** @brief obtains a subspan of the span
         * constructs a range out of the size arguments and invokes the range-based subspan method
         */
        template <class ...Sizes>
        TensorSpan subspan(size_type offset, Sizes... new_sizes_) const {
            static_assert(sizeof...(Sizes) <= CSL_MAX_TENSOR_RANK, "required rank exceeds maximum supported rank");
            static_assert(sizeof...(Sizes) > 0, "no sizes provided");
            std::array<std::int64_t, sizeof...(Sizes)> new_sizes = { static_cast<std::int64_t>(new_sizes_)... };
            return subspan(offset, std::begin(new_sizes), std::end(new_sizes));
        }

        operator Span<T>() noexcept { return Span<T>(ptr, size()); }
        operator View<T>() const noexcept { return View<T>(ptr, size()); }

        friend void swap(TensorSpan& lhs, TensorSpan& rhs) noexcept {
            using std::swap;
            swap(lhs.ptr, rhs.ptr);
            swap(lhs.shape, rhs.shape);
        }

    private:
        cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> shape;
        pointer ptr;
    };

    /** @brief view of a tensor
     *
     * \tparam  T       type of data stored by the tensor
     *
     * A view is valid if and only if the following hold true:
     * - view is non-empty
     * - viewed memory is still allocated
     */
    template <class T>
    class TensorView {
    public:
        using value_type    = typename Tensor<T>::value_type;
        using pointer       = typename Tensor<T>::pointer;
        using const_pointer = typename Tensor<T>::const_pointer;
        using size_type     = typename Tensor<T>::size_type;

        TensorView() noexcept : ptr{ nullptr } { }
        TensorView(const TensorView&) noexcept = default;
        TensorView(TensorSpan<T> other) noexcept : ptr{ other.get() } {
            const auto rank = other.rank();
            shape.resize(rank);
            for (int i = 0; i < rank; i++)
                shape[i] = other.get_axis_size(i);
        }
        TensorView(const Tensor<T>& tensor) noexcept : ptr{ tensor.get() } {
            const auto rank = tensor.rank();
            shape.resize(rank);
            for (int i = 0; i < rank; i++)
                shape[i] = tensor.get_axis_size(i);
        }

        template <class ForwardItr>
        TensorView(const_pointer ptr_, ForwardItr start, ForwardItr end) : ptr{ ptr_ } {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= CSL_MAX_TENSOR_RANK);

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;
            if (std::any_of(start, end, [](ItrValueType x) { return x <= 0; })) {
                CV_Error(Error::StsBadArg, "the given shape contains negative or zero size");
            }

            shape.assign(start, end);
        }

        /** creates a subview of a tensor (or span or view); refer to subview method for more details */
        template <class... Args>
        TensorView(TensorView other, size_type offset, Args&&... args) noexcept
            : TensorView(other.subview(offset, std::forward<Args>(args)...)) { }

        TensorView& operator=(const TensorView&) = default;
        TensorView& operator=(TensorSpan<T> other) noexcept {
            TensorView tmp(other);
            swap(*this, tmp);
            return *this;
        }

        /** returns true if the view is empty */
        bool empty() const noexcept { return shape.size() == 0; }

        /** returns the total number of elements in the view
         *
         * Pre-conditions:
         * - view must be non-empty
         */
        size_type size() const noexcept {
            CV_Assert(!empty());
            return std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<size_type>());
        }

        /** returns the rank of the view
         *
         * Pre-conditions:
         * - view must be non-empty
         */
        size_type rank() const noexcept {
            CV_Assert(!empty());
            return shape.size();
        }

        /** @brief returns the length of the axis
         *
         * Every axis is assigned a zero-based index which can be used to select an axis.
         * Negative index can be used to select an axis from the end.
         *
         * Examples:
         * > -1 represents the last axis
         * > 0 represents the first axis
         * > 1 represents the second axis
         *
         * Pre-conditions:
         * - view must be non-empty
         * - the axis must be in the range [-rank(), rank())
         */
        size_type get_axis_size(int axis) const noexcept {
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            return shape[axis];
        }

        /** @brief returns the combined size of the axes in an axis range
         *
         * if the shape is [3 x 5 x 7 x 11]
         * - `size_range(0, 2)` will return 3 x 5 = 15
         * - `size_range(1, 3)` will return 5 x 7 = 35
         * - `size_range(0, 4)` will return 3 x 5 x 7 x 11 = 1155
         *
         * Pre-conditions:
         * - view must be non-empty
         * - `axis_start` must be less than or equal to `axis_end`
         * - `axis_end` must be less than or equal to the rank
         *
         * returns one if the two `axis_start` and `axis_end` are equal
         */
        size_type size_range(size_type axis_start, size_type axis_end) const noexcept {
            CV_Assert(!empty());
            CV_Assert(axis_start <= axis_end);
            CV_Assert(axis_end <= rank());
            auto start = std::begin(shape) + axis_start;
            auto end = std::begin(shape) + axis_end;
            return std::accumulate(start, end, 1, std::multiplies<size_type>());
        }

        /** returns an std::vector containing axis lengths starting from axis zero
         *
         * Pre-conditions:
         * - view must be non-empty
         *
         * Exception Guarantee: Strong
         */
        std::vector<size_type> shape_as_vector() const {
            CV_Assert(!empty());
            return std::vector<size_type>(std::begin(shape), std::end(shape));
        }

        /** returns a device pointer to immutable device memory */
        const_pointer get() const noexcept { return ptr; }

        /** @brief reshapes the view
         *
         * Length deduction:
         * The length of at most one axis can be deduced using the total size constraint. The axis can
         * be marked for deduction by specifying the size as -1.
         *
         * The axes for which no size was provided (excluding -1) will be assumed to be one.
         *
         * Pre-conditions:
         * - view must be non-empty
         * - [start, end) represents a forward range containing length of the axes in order starting from axis zero
         * - the number of axis lengths must be less than or equal to the tensor rank
         * - at most one axis length is allowed for length deduction
         * - the lengths provided must ensure that the total number of elements remains unchanged
         *
         * Exception Guarantee: Strong
         */
        template <class ForwardItr>
        typename std::enable_if<!std::is_integral<ForwardItr>::value, void>
        ::type reshape(ForwardItr start, ForwardItr end) {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= rank());

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;

            /* the user may leave at most one axis size for deduction by specifying -1 */
            auto sizes_to_deduce = std::count(start, end, -1);
            if (sizes_to_deduce > 1) { CV_Error(Error::StsBadArg, "only one axis size can be deduced"); }

            /* sizes must be positive numbers with the exception of -1 */
            auto invalid_sizes = std::count_if(start, end, [](ItrValueType x) {
                return !(x > 0 || x == -1);
            });
            if (invalid_sizes) { CV_Error(Error::StsBadArg, "invalid axis size"); }

            /* compute the total number of elements in the new tensor */
            size_type unknown_size = 0;
            auto total = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
            if (total < 0) {
                /* there is an unknown size */
                if (std::abs(total) <= size()) {
                    unknown_size = size() / std::abs(total);
                    total = size();
                }
                /* Edge case: if `total` is already more than size(), skip the deduction as it's impossible
                ** Since `total` is negative, the size check which follows will fail and throw an error
                */
            }

            /* the number of elements before and after reshape must be exactly same */
            if (total != size()) {
                CV_Error(Error::StsBadArg, "new axes do not preserve the tensor element count");
            }

            /* we assume the size of the unspecified axes to be one */
            std::fill(std::begin(shape), std::end(shape), 1);
            std::copy_backward(start, end, std::end(shape));

            /* replace the unknown axis with the correct value */
            std::replace(std::begin(shape), std::end(shape), size_type(-1), unknown_size);
        }

        /** @brief reshapes the view
         * constructs a range out of the arguments and invokes the range-based reshape method
         */
        template <class ...Sizes>
        void reshape(Sizes... new_sizes_) {
            static_assert(sizeof...(Sizes) <= CSL_MAX_TENSOR_RANK, "required rank exceeds maximum supported rank");
            static_assert(sizeof...(Sizes) > 0, "no sizes provided");
            std::array<std::int64_t, sizeof...(Sizes)> new_sizes = { static_cast<std::int64_t>(new_sizes_)... };
            reshape(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief reshapes the view
         *
         * Pre-conditions:
         * - the reference tensor/span/view must be non-empty
         * - the reference tensor/span/view's rank must be less than or equal to the rank of the view
         *
         * Exception Guarantee: Strong
         */
        template <class TensorType>
        void reshape_as(const TensorType& tensor) {
            CV_Assert(!tensor.empty());
            cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> new_sizes(tensor.rank());
            for (int i = 0; i < new_sizes.size(); i++)
                new_sizes[i] = tensor.get_axis_size(i);
            reshape(std::begin(new_sizes), std::end(new_sizes));
        }

        /** @brief squeezes the tensor
         *
         * removes all axes of unit size
         *
         * Pre-conditions:
         * - the view must be non-empty
         * - the view's rank must be at least two
         *
         * Exception Guarantee: Strong
         */
        void squeeze() {
            CV_Assert(!empty());
            CV_Assert(rank() >= 2);
            auto itr = std::remove(std::begin(shape), std::end(shape), 1);
            shape.resize(itr - std::begin(shape));
        }

        /** @brief squeezes the tensor
         *
         * removes the specified axis if the axis length is one; otherwise, ignores the request
         *
         * Pre-conditions:
         * - the view must be non-empty
         * - the view's rank must be at least two
         *
         * Exception Guarantee: Strong
         */
        void squeeze(int axis) {
            CV_Assert(!empty());
            CV_Assert(rank() >= 2);
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            shape.erase(std::begin(shape) + axis);
        }

        /** @brief squeezes the tensor
         *
         * removes leading singleton axes until the tensor's rank is equal to the requested rank
         *
         * Pre-conditions:
         * - the tensor must be non-empty
         * - the tensor's rank must be at least two
         * - the tensor's rank must be at least the requested rank
         * - the tensor must be squeezable up to the requested rank
         *
         * Exception Guarantee: Strong
         */
        void squeeze_to(int r) {
            CV_Assert(!empty());
            CV_Assert(rank() >= r);
            CV_Assert(std::all_of(std::begin(shape), std::end(shape) - r, [](size_type x){ return x == 1; }));
            std::copy(std::end(shape) - r, std::end(shape), std::begin(shape));
            shape.resize(r);
        }

        /** @brief unsqueezes the tensor
         *
         * adds a axis of unit size at the requested before the specified axis
         *
         * Pre-conditions:
         * - the view must be non-empty
         * - the view's rank must be less than the maximum supported rank (CSL_MAX_TENSOR_RANK)
         *
         * Exception Guarantee: Strong
         */
        void unsqueeze(int axis = 0) {
            CV_Assert(!empty());
            CV_Assert(rank() < CSL_MAX_TENSOR_RANK);
            axis = clamp_axis(axis, rank());
            CV_Assert(axis >= 0 && axis < rank());
            shape.insert(std::begin(shape) + axis, 1);
        }

        /** @brief obtains a subview of the view
         *
         * The axes for which no size was provided will be assumed to be one.
         *
         * Pre-conditions:
         * - the view must be non-empty
         * - the `offset` must be less than the size of the view
         * - [start, end) represents a forward range containing length of the subview axes in order
         * - the number of axis lengths provided must be less than or equal to the tensor rank
         * - the lengths provided must ensure that the number of elements does not exceed (old size - offset)
         *
         * Exception Guarantee: Strong
         */
        template <class ForwardItr>
        typename std::enable_if<cxx_utils::is_forward_iterator<ForwardItr>::value, TensorView>
        ::type subview(size_type offset, ForwardItr start, ForwardItr end) const {
            CV_Assert(start != end);
            CV_Assert(std::distance(start, end) <= rank());

            auto cur_size = size();
            CV_Assert(offset < cur_size);

            using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;

            /* sizes must be positive numbers */
            auto invalid_sizes = std::count_if(start, end, [](ItrValueType x) {
                return !(x > 0);
            });
            if (invalid_sizes) { CV_Error(Error::StsBadArg, "invalid axis size"); }

            /* the number of elements must be equal to the new size */
            auto max_size = (cur_size - offset);
            auto total = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
            if (total > max_size) {
                CV_Error(Error::StsBadArg, "axes lengths lead to OOB accesses");
            }

            TensorView temp;
            temp.shape.assign(start, end);
            temp.ptr = ptr + offset;
            return temp;
        }

        /** @brief obtains a subview of the view
         * constructs a range out of the size arguments and invokes the range-based subview method
         */
        template <class ...Sizes>
        TensorView subview(size_type offset, Sizes... new_sizes_) const {
            static_assert(sizeof...(Sizes) <= CSL_MAX_TENSOR_RANK, "required rank exceeds maximum supported rank");
            static_assert(sizeof...(Sizes) > 0, "no sizes provided");
            std::array<std::int64_t, sizeof...(Sizes)> new_sizes = { static_cast<std::int64_t>(new_sizes_)... };
            return subview(offset, std::begin(new_sizes), std::end(new_sizes));
        }

        operator View<T>() const noexcept { return View<T>(ptr, size()); }

        friend void swap(TensorView& lhs, TensorView& rhs) noexcept {
            using std::swap;
            swap(lhs.ptr, rhs.ptr);
            swap(lhs.shape, rhs.shape);
        }

    private:
        cxx_utils::resizable_static_array<size_type, CSL_MAX_TENSOR_RANK> shape;
        const_pointer ptr;
    };

    /** returns true if the two TensorType objects have the same shape */
    template <class TensorType1, class TensorType2>
    bool is_shape_same(const TensorType1& x, const TensorType2& y) noexcept {
        auto rank1 = x.rank();
        auto rank2 = y.rank();

        if (rank1 != rank2)
            return false;

        for (int i = 0; i < rank1; i++)
            if (x.get_axis_size(i) != y.get_axis_size(i))
                return false;
        return true;
    }

    /** returns true if the two TensorType objects are compatible */
    template <class TensorType1, class TensorType2>
    bool is_shape_compatible(const TensorType1& x, const TensorType2& y) noexcept {
        const auto rank1 = x.rank();
        const auto rank2 = y.rank();

        /* mathematically not required but is a technically required */
        if (rank1 != rank2)
            return false;

        for (int i = 0; i < rank1; i++)
            if (x.get_axis_size(i) != y.get_axis_size(i) &&
                x.get_axis_size(i) != 1 && y.get_axis_size(i) != 1)
                return false;
        return true;
    }

    /** returns the rank to which the given tensor can be squeezed to */
    template <class TensorType>
    std::size_t get_effective_rank(const TensorType& x) noexcept {
        const auto rank = x.rank();
        auto effective_rank = rank;
        for (int i = 0; i < rank; i++, effective_rank--)
            if (x.get_axis_size(i) != 1)
                break;
        return effective_rank;
    }

}}}} /* namespace cv::dnn::cuda4dnn::csl */

#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_TENSOR_HPP */